Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{38.41}{39.40}\)
\(=\frac{1.2.3.4...38}{2.34.5...39}.\frac{4.5.6.7...41}{3.4.5.6...40}\)
\(=\frac{1}{39}.\frac{41}{3}=\frac{41}{297}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
(1-1/3) x (1-1/6) x (1-1/10) x (1-1/15)x ...x (1-1/780)
=2/3x 5/6 x 9/10 x...x 779/780
=4/6 x 10/12 x 18/20 x ...x 1558/1560
=4x10 x 18 x...x 1558/6x 12 x 20 x ...x 1560
= 41/39x 3
= 41/11
= 4/6 . 10/12.....1558/1560
= 1.4 . 2.5 .... 38.41/ 2.3 . 3. 4. .....39.40
= ( 1.2.3....38).(4.5....41)/(2.3.4....39)(3.4...40)
triệt tiêu xong còn 41/39.3= 41/117
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}\)\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(B=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(\Rightarrow B=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(\Rightarrow B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(\Rightarrow B=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(D=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(\Rightarrow D=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(\Rightarrow D=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(\Rightarrow D=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
a)\(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\) \(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}.....\frac{49.51}{50^2}\)\(=\frac{\left(2.3.4.....49\right)\left(4.5.6....51\right)}{\left(3.4.5.....50\right)\left(3.4.5.....50\right)}=\frac{2.51}{50.3}=\frac{1.17}{25}=\frac{17}{25}\)
b)\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}\)\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(G=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{780}\right)\)
\(=\left(1-\frac{1}{\frac{2.3}{2}}\right)\left(1-\frac{1}{\frac{3.4}{2}}\right)\left(1-\frac{1}{\frac{4.5}{2}}\right).....\left(1-\frac{1}{\frac{39.40}{2}}\right)\)
Ta có : \(1-\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Áp dụng ta được :
\(G=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.......\frac{38.41}{39.40}\)
\(=\frac{\left(2.3....38\right)\left(4.5.6.....41\right)}{\left(2.3.4....39\right)\left(3.4.5....40\right)}=\frac{41}{39.3}=\frac{41}{117}\)
\(N=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)......\left(1-\frac{1}{780}\right)\)
\(\Rightarrow N=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}......\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.....\frac{1558}{1560}\)
\(\Rightarrow N=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{38.41}{39.40}\)
\(\Rightarrow N=\frac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)