Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Gọi S là độ dài quãng đường AB, gọi t là thời gian chuyển động hết 2/3 quãng đường cuối.Ta có :
\(\dfrac{2}{3}S=v_2.\dfrac{2}{3}t+v_3.\dfrac{1}{3}t\Rightarrow t=\dfrac{2S}{2.v_2+v_3}=\dfrac{2S}{2.45+30}=\dfrac{S}{60}\left(h\right)\)
Mặt khác : \(\dfrac{S}{v}=\dfrac{S}{3v_1}+t\Rightarrow\dfrac{S}{v}=\dfrac{S}{3v_1}+\dfrac{S}{60}\Rightarrow v=40km/h\)
2/gọi t (h) là tổng thời gian xe đi hết quãng đường AB, gọi S là độ dài quãng đường xe đi trong 3/5 tổng thời gian cuối.
Ta có : \(\dfrac{\dfrac{3}{4}S}{v_2}+\dfrac{\dfrac{1}{4}S}{v_3}=\dfrac{3}{5}t\).Thay số => S = 14,4t (km)
Mặt khác: \(v.t=\dfrac{2}{5}t.v_1+S\Rightarrow v.t=\dfrac{2}{5}v_1.t+14,4t\Rightarrow v=30,4km/h\)
Tốc độ trung bình của vật chuyển động trên cả đoạn đường AC là
\(v = \frac{S}{t} = \frac{AB+BC}{t_1+t_2} = \frac{v_1 t_1 + v_2 t_2}{t_1+t_2}.\)
câu trả lời của bạn Hai Yen sai rồi
phải tính từng vận tốc trung bình của vật đó ở trên từng qđ rồi mới tính vận tốc trung bình trên cả qđ
Bài 1 :
Độ dài quãng đường sau là :
S2 = t2. v2 = 24. 1/6 = 4km.
Độ dài quãng đường đầu là :
S1 = 3S2 = 12km.
Tổng độ dài quãng đường AB là:
S = S1 + S2 = 12 + 4 = 16km.
Thời gian đi hết quãng đường đầu là :
t = S/v = 16/32 = 0,5h
Thời gian đi hết quãng đường đầu là là:
t1 = t - t2 = 0,5 – 1/6 = 1/3 (h)
Vận tốc của xe trên quãng đường đầu là :
v1 = S1/t1 = 12/(1/3) = 36km/h
Bài 2 :
Ta có :
t = 1h45’ = 1,75h
S = 45km.
Vận tốc trung bình của xe trên quãng đường AB là :
v = S/t = 63/1,75 = 36km/h
a) gọi s là nửa quãng đường . ta có :
thời gian xe đi trong nửa quãng đường đầu và nửa quãng đường sau lần lượt là :
t1 = \(\dfrac{s}{v_1}\)
t2 = \(\dfrac{s}{v_2}\)
vận tốc trung bình của xe đi trong cả quãng đường trên là :
vtb = \(\dfrac{2s}{t_1+t_2}\) = \(\dfrac{2s}{\dfrac{s}{v_1}+\dfrac{s}{v_2}}\) = \(\dfrac{2}{\dfrac{1}{v_1}+\dfrac{1}{v_2}}\)
b) sọi s là cả quãng đường
gọi s1, s2 lần lượt là quãng đường xe đi được trong nửa thời gian đầu và nửa thời gian sau . ta có :
thời gian xe đi trên quãng đường đầu và quãng đường sau lần lượt là :
t1 = \(\dfrac{s_1}{v_1}\)
t2 = \(\dfrac{s_2}{v_2}\)
vì t1 = t2 => \(\dfrac{s_1}{v_1}\) = \(\dfrac{s_2}{v_2}\) = \(\dfrac{s_1+s_s}{v_1+v_2}\) = \(\dfrac{s}{v_1+v_2}\)
vận tốc trung bình của xe đi trên cả quãng đường là :
vtb = \(\dfrac{s}{2t_1}\) = = \(\dfrac{s}{\dfrac{2s}{v_1+v_2}}\) = \(\dfrac{v_1+v_2}{2}\)
+) Nửa quãng đường đầu : \(200=v_1\cdot t_1\)
Nửa quãng đường sau : \(200=v_2\cdot t_2\)
=> Ta có phương trình \(v_1\cdot t_1=v_2\cdot t_2\Leftrightarrow v_1\cdot t_1=\dfrac{v_1}{2}\cdot t_2\left(1\right)\)
+) Theo đề ta có \(t_1+t_2=60s\)(2)
(1) , (2) => Ta có hpt :
\(\left\{{}\begin{matrix}v_1\cdot t_1=\dfrac{v_1}{2}\cdot t_2\\t_1+t_2=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2=\dfrac{t_2}{t_1}\\t_1+t_2=60\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=20s\\t_2=40s\end{matrix}\right.\)
Vận tốc : \(\left\{{}\begin{matrix}v_1=\dfrac{200}{20}=10\left(m/s\right)\\v_2=\dfrac{200}{40}=5\left(m/s\right)\end{matrix}\right.\)
Do điểm đặt mốc là đường hầm,
=> xe II có cơ năng bé nhất(=0).
Công hức tính thế năng W = P.h = 10m.h
:)) rồi bạn nhân lên đi, không quan tâm vận tốc nhé