Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia quãng đường từ A đến B làm sáu phần mỗi phần gọi là: \(s\left(km\right)\)
Cả quãng đường AB là: \(6s\left(km\right)\)
Gọi t là thời gian người đó đi trong \(\dfrac{1}{3}\) quãng đường
Thời gian người đó đi trên quãng đường AB là: \(3t\left(h\right)\)
Trong \(\dfrac{1}{3}\) thời gian người đó đi với vận tốc v2 :
\(s_2=\dfrac{1}{3}\cdot6s=2s\left(km\right)\)
Quãng đường mà người đó đi với vận tốc v3 :
\(s_3=\dfrac{1}{2}\cdot6s=3s\left(km\right)\)
Mà: \(s_1+s_2+s_3=s_{AB}\)
Quãng đường mà người đó đi được với vận tốc 20km/h:
\(s_1=s_{AB}-s_2-s_3=6s-2s-3s=s\left(km\right)\)
Giá trị của 1 trong 6 phần quãng đường AB là:
\(s=20\cdot\dfrac{1}{3}\cdot3t=20t\left(km\right)\)
Ta có tổng quãng đường đi là:
\(s_1+s_2+s_3=6s\left(km\right)\)
Tổng thời gian mà người đó đi là:
\(t_1+t_2+t_3=3t\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường:
\(v_{tb}=\dfrac{s_{AB}}{t}=\dfrac{6s}{3t}=\dfrac{2s}{t}\left(km/h\right)\)
Mà: \(s=20t\left(km\right)\) thay vào ta có:
\(v_{tb}=\dfrac{2\cdot20t}{t}=2\cdot20=40\left(km/h\right)\)
Vận tốc v2 không thể nhỏ hơn giá trị của v1 là 20 km/h.
Lê Thanh Tịnh
Gọi vị trí ban đầu của người đi xe đạp ban đầu ở A , người đi bộ ở B , người đi xe máy ở C ; S là chiều dài quãng đường AC tính theo đơn vị km ; Vận tốc người đi xe đạp là V1 ; Vận tốc người đi xe máy là V2 ; Vận tốc người đi bộ là Vx . Người đi xe đạp chuyển động từ A về C , người đi xe đạp từ C về A .
Kể từ lúc xuất phát thời gian để hai người đi xe đạp và đi xe máy gặp nhau là :
\(t=\dfrac{S}{v_1+v_2}=\dfrac{S}{20+60}=\dfrac{S}{80}\left(h\right)\)
Chỗ ba người gặp nhau cách A :
\(S_0=20\times\dfrac{S}{80}=\dfrac{S}{4}\)
Nhận xét : \(S_0< \dfrac{S}{3}\Rightarrow\) Hướng đi của người đi bộ từ B đến A
Vận tốc của người đi bộ :
\(v_x=\dfrac{\dfrac{s}{3}-\dfrac{S}{4}}{\dfrac{S}{80}}\approx6,67\left(\dfrac{km}{h}\right)\)
Gọi vận tốc của dòng nước và thuyền là \(v_1\) và \(v_2\)
Thời gian bè trôi:\(t_1=\frac{AC}{v_1}\) (*)
Thời gian chuyển động :
\(t_2=0,5+\frac{0,5\left(v_2-v_1\right)+AC}{v_1+v_2}\) (**)
\(t_1=t_2\rightarrow\frac{AC}{V_1}=0,5+\frac{0,5\left(v_2-v_1\right)+AC}{v_1+v_2}\)
Giải ra ta được: \(AC=v_1\)
Thay vào (*) có:\(t_1=1h\)
Thời gian thuyền quay lại tại B cho đến lúc thuyền đuổi kịp bè là:
\(t=1-0,5=0,5\left(h\right)\)
Vận tốc dòng nước là:
\(v_1=AC\Rightarrow v_1=\frac{6km}{h}\)
a)
Thời gian An đến B:
\(t_A=\dfrac{1S}{2.30}+\dfrac{1S}{2.20}=\dfrac{1S}{24}\)
Thời gian Quý đến B:
\(S=30.\dfrac{1t}{2}+20.\dfrac{1t}{2}\Rightarrow t_Q=\dfrac{1S}{25}\)
Vậy Quý đến B nhanh hơn An: \(\dfrac{S}{24}>\dfrac{S}{25}\)
b)
Ta có: \(t_A-t_Q=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{S}{24}-\dfrac{S}{25}=\dfrac{1}{6}\Rightarrow S=100\left(km\right)\)
bài 1:
a/ Quãng đường đi trong 5s đầu: S5 = v0t5 + at52
Quãng đường đi trong 6s:S6 = v0t6 + at62
Quãng đường đi trong giây thứ 6:
S = S6 - S5 = 14 a = 2m/s2
b/ S20 = v0t20 + at202 = 460m
bài 4:
S1 = v0t1 + at12 4.v01 + 8a = 24 (1)
S2 = v01t2 + at22 4.v01 + 8a = 64 (2)
Mà v02 = v1 = v01 + at2 (3)
Giải (1), (2), (3) ta được : v01 = 1m/s, a = 2,5m/s2
2 bài còn lại ko bt lm