Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
\(\frac{sin3x+sinx+sin4x}{cos4x+1+cosx+cos3x}=\frac{2sin2x.cosx+2sin2x.cos2x}{2cos^22x+2cos2x.cosx}=\frac{2sin2x\left(cosx+cos2x\right)}{2cos2x\left(cos2x+cosx\right)}=\frac{sin2x}{cos2x}=tan2x\)
\(\frac{sin^22x+2cos\left(2\pi+\pi+2x\right)-2}{-3+4cos2x+cos\left(\pi-4x\right)}=\frac{sin^22x-2cos2x-2}{-3+4cos2x-cos4x}=\frac{4sin^2x.cos^2x-2\left(2cos^2x-1\right)-2}{-3+4\left(1-2sin^2x\right)-\left(1-2sin^22x\right)}\)
\(=\frac{4cos^2x\left(sin^2x-1\right)}{-8sin^2x+2sin^22x}=\frac{2cos^2x.\left(-cos^2x\right)}{-4sin^2x+4sin^2x.cos^2x}=\frac{cos^4x}{2sin^2x\left(1-cos^2x\right)}\)
\(=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=\frac{1+2sin2x.cos2x+2cos^22x-1}{1-2sin2x.cos2x+2cos^22x-1}\)
\(=\frac{2cos2x\left(sin2x+cos2x\right)}{2cos2x\left(cos2x-sin2x\right)}=\frac{sin2x+cos2x}{cos2x-sin2x}\)
\(=\frac{\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)}{\sqrt{2}cos\left(2x+\frac{\pi}{4}\right)}=tan\left(2x+\frac{\pi}{4}\right)\)
\(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2\)
\(=\left(\sqrt{2}sin\left(5x-\frac{\pi}{4}\right)\right)^2-\left(\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)\right)^2\)
\(=2sin^2\left(5x-\frac{\pi}{4}\right)-2sin^2\left(3x+\frac{\pi}{4}\right)\)
\(=1-cos\left(10x-\frac{\pi}{2}\right)-1+cos\left(6x+\frac{\pi}{2}\right)\)
\(=-sin10x-sin6x=-2sin8x.cos2x\)