K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 4 2023

Lời giải:

$1440=2^5.3^2.5$

Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$

Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$

Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$

Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

31 tháng 12 2017

5 tháng 3 2018

Chọn C

Gọi A (d; e; f) thì A thuộc mặt cầu (S1): (x - 1)+ (y - 2)+ (z- 3)= 1 có tâm I= (1; 2; 3)bán kính R= 1

B (a; b; c) thì B thuộc mặt cầu (S2): (x - 3)+ (y - 2)+ z= 9 có tâm I= (-3; 2; 0), bán kính R= 3

Ta có I1I2 = 5 > R+ R=> (S1và (S2) không cắt nhau và ở ngoài nhau. 

Dễ thấy F = AB, AB max khi ≡ A1; B ≡ B1

=> Giá trị lớn nhất bằng I1I2 + R+ R= 9.

AB min khi ≡ A2; B ≡ B2 

=> Giá trị nhỏ nhất bằng I1I2 - R- R= 1.

Vậy M - m =8

AH
Akai Haruma
Giáo viên
28 tháng 10 2017

Lời giải:

Có \(f(x)=x-m^2+\frac{m}{x+1}\Rightarrow f'(x)=1-\frac{m}{(x+1)^2}\)

Do $m$ dương nên

\(f'(x)=0\Leftrightarrow (x+1)^2=m\Rightarrow x=\sqrt{m}-1\) hoặc \(x=-\sqrt{m}-1\) (TH này loại vì \(x\geq 0\))

Giờ ta chỉ cần thử giá trị của hàm tại những điểm đặc biệt thôi, vì giá trị cực trị bao giờ cũng xuất hiện ở những điểm đặc biệt của x

\(f(0)=-m^2+m=-2\Leftrightarrow m=2\)

\(f(1)=1-m^2+\frac{m}{2}=-2\Leftrightarrow m=2\)

\(f(\sqrt{m}-1)=\sqrt{m}-1-m^2+\frac{m}{\sqrt{m}-1}=-2\), em shift solve để giải thu được \(m=2,6.....\)

Đến đây theo thông thường ta phải thử lại giá trị của $m$ để tìm đáp án đúng nhất. Nhưng do chỉ tìm giá trị gần nhất thôi nên dễ thấy $m$ gần giá trị $3$ nhât, chọn đáp án B.

à:::::::::: a,b nguyên dương

\(S=8b^2+3b+8\)

vậy min S tại b=1 (số nguyên dương ) ......nhìn thôi cũng thấy rồi !

=>minS=19======>>>(B)

\(y'=\left(a-4\right)x^2+4bx+1\)

Để hàm số đồng biến trên R thì

\(\left\{{}\begin{matrix}a-4>0\\4b^2-\left(a-4\right)\le0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a>4\\a-4\ge4b^2\end{matrix}\right.\)

ta thấy S=2a+3b nhỏ nhất khi a và b nhỏ nhất

ta thấy :\(a-4\ge4b^2\)

a và b sẽ mang giá trị nhỏ nhất khi \(a-4=4b^2\)

=>\(a=4b^2+4\)

vậy \(S=2\left(4b^2+4\right)+3b\)

vậy min S là : ...................

..............................

.................................

....................

\(-\infty\)

sao kì vậy ! may be lí luận sai chỗ nào đấy

14 tháng 2 2018

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.

16 tháng 2 2019

5 tháng 6 2019

+ Xét hàm số y= x4- 4x3+ 4x2+ a  trên đoạn [ 0; 2].

Ta có đạo hàm y’ = 4x3-12x2+ 8x,   y ' = 0

Khi đó;  y( 0) = y( 2) = a; y( 1) = a+ 1

+ Nếu a≥ 0  thì  M= a+ 1,m = a.

 Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3  thỏa mãn

+ Nếu a≤ - 1 thì  M = a = - a ,   m = a + 1 = - a - 1 .

 Để  M≤ 2m thì a≤ -2,  suy ra a a ∈ - 2 ; - 3   

Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.

Chọn B.