Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỪNG ẤN ĐỌC THÊM (có điều ghê rợn dưới đó, đừng ấn :<<< )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
Đã kêu đừng ấn mà đéo nghe :))))
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.Thôi, lướt tiếp đi
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
Lần này nữa thôi :)))
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.Cố lên
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
\(\frac{4}{9\times11}+\frac{4}{11\times13}+\frac{4}{13\times15}+...+\frac{4}{97\times99}\)
\(=2\times\left(\frac{2}{9\times11}+\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{97\times99}\right)\)
\(=2\times\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\times\left[\frac{1}{9}+\left(\frac{1}{11}-\frac{1}{11}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{15}-\frac{1}{15}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\right]\)
\(=2\times\left(\frac{1}{9}-\frac{1}{99}\right)\)
\(=2\times\frac{10}{99}\)
\(=\frac{20}{99}\)
Tính nhanh mỗi biểu thức sau:
a, 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
= (0 + 20) + (1 + 19) + (2 + 18) + (3 + 17) + (4 + 16) + (5 + 15) + (6 + 14) + (7 + 13) + (8 + 12) + (9 + 11) + 10
= 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 10
= 20 x 10 + 10
= 200 + 10
= 210
b, 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (4 x 9 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (36 - 36)
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0
= A x 0
= 0
c, (81 - 7 x 9 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (81 - 63 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= (18 - 18) : (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 :(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)
= 0 : A
= 0
d, (6 x 5 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (30 + 7 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= (37 - 37) x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
= 0 x A
= 0
e, (11 x 9 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 - 100 + 1) : (1 x 2 x 3 x 4 x ... x 10)
= (99 + 1 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= (100 - 100) : (1 x 2 x 3 x 4 x ... x 10)
= 0 : (1 x 2 x 3 x 4 x ... x 10)
= 0 : A
= 0
g, (m : 1 - m x 1) : (m x 2008 + m x 2008)
= (m - m) : (m x 2008 + m x 2008)
= 0 : (m x 2008 + m x 2008)
= 0 : A
= 0
h, (2 + 4 + 6 + 8 + m x n) x (324 x 3 - 972)
= (2 + 4 + 6 + 8 + m x n) x (972 - 972)
= (2 + 4 + 6 + 8 + m x n) x 0
= A x 0
= 0
l, (1 + 2 + 3 + ... + 99) x (13 x 15 - 12 x 15 - 15)
= (1 + 2 + 3 + ... + 99) x (15 x (13 - 12 - 1))
= (1 + 2 + 3 + ... + 99) x (15 x 0)
= (1 + 2 + 3 + ... + 99) x 0
= A x 0
= 0
i, (0 x 1 x 2 x...x 99 x 100) : (2 + 4 + 6 +...+ 98)
= 0 x : (2 + 4 + 6 +...+ 98)
= 0 x A
= 0
k, (0 + 1 + 2 +...+ 97 + 99) x (45 x 3 - 45 x 2 - 45)
= (0 + 1 + 2 +...+ 97 + 99) x (45 x (3 - 2 - 4))
= (0 + 1 + 2 +...+ 97 + 99) x (45 x 0)
= (0 + 1 + 2 +...+ 97 + 99) x 0
= A x 0
= 0
\(M=\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\( M=\frac{9-7}{7.9}+\frac{11-9}{9.11}+\frac{13-11}{11.13}+\frac{15-13}{13.15}\)
\(M=\frac{9}{7.9}-\frac{7}{7.9}+\frac{11}{9.11}-\frac{9}{9.11}+\frac{13}{11.13}-\frac{11}{11.13}+\frac{15}{13.15}-\frac{13}{13.15}\)
\(M=\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(M=\frac{1}{7}-\frac{1}{15}\)
\(M=\frac{15}{105}-\frac{7}{105}\)
\(M=\frac{8}{105}\)
Minh lam dung 100% do
TICK CHO MINH NHA!!!!!
\(M=\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{12\cdot15}\)đề này sai bạn ạ mà toán nay là toán lớp 4 hả??
Đặt A=4/9x11+4/11x13+4/13x15+..+4/97x99
A=2x( 2/9x11+2/11x13+...+2/97x99)
A=2x(1/9-1/11+1/11-1/13+...+1/97-1/99)
A=2x(1/9-1/99)
A=2x10/99=20/99
yêu cầu là tính phải ko bn ( lần sau nhớ ghi rõ yêu cầu nhé !)
Đặt A=4/9x11+4/11x13+4/13x15+...+4/97x99
A=2x(2/9x11+2/11x13+...+2/97x99)
A=2x(1/9-1/11+1/11-1/13+...+1/97-1/99)
A=2x(1/9-1/99)
A=2x10/99=20/99
\(=2\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{9}-\frac{1}{99}\right)\)
\(=2.\frac{10}{99}\)
\(=\frac{20}{99}\)
\(\frac{4}{9.11}+\frac{4}{11.13}+\frac{4}{13.15}+...+\frac{4}{97.99}\)
\(=2\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{9}-\frac{1}{99}\right)=\frac{20}{99}\)
#)Giải :
\(\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{97}\right)\left(1-\frac{2}{99}\right)\)
\(=\frac{3}{5}\times\frac{5}{7}\times\frac{7}{9}\times...\times\frac{95}{97}\times\frac{97}{99}\)
\(=\frac{3}{99}=\frac{1}{33}\)( loại các cặp số giống nhau ở tử và mẫu của các phân số )
\(\left[1-\frac{2}{5}\right]\times\left[1-\frac{2}{7}\right]\times\left[1-\frac{2}{9}\right]\times\left[1-\frac{2}{11}\right]\times...\times\left[1-\frac{2}{97}\right]\times\left[1-\frac{2}{99}\right]\)
\(=\frac{3}{5}\times\frac{5}{7}\times\frac{7}{9}\times\frac{9}{11}\times...\times\frac{95}{97}\times\frac{97}{99}\)
\(=\frac{3\times5\times7\times9\times...\times97}{5\times7\times9\times11\times...\times97\times99}=\frac{3}{99}=\frac{1}{33}\)
\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}=1-\frac{1}{15}=\frac{14}{15}\)
Bài làm:
Ta có: \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{15}\)
Lời giải:
$M=\frac{9-7}{7\times 9}+\frac{11-9}{9\times 11}+\frac{13-11}{11\times 13}+...+\frac{99-97}{97\times 99}$
$=\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{99}$
$=\frac{1}{7}-\frac{1}{99}$
$=\frac{92}{693}$