Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ot là tia phân giác của góc bẹt xOy
nên ˆtOx���^=ˆtOy���^=90o90�
Xét ΔAOC và ΔDOB có OA=OD(gt)
ˆAOC���^=ˆDOB���^=90o90�(cnt)
OC=OB(gt)
Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD
Ta có ΔAOC và ΔDOB (cmt) ⇒ ^C1�1^=^B1�1^ và ^A1�1^=^D1�1^(góc tương ứng)
Mà ^A1�1^+^C1�1^=90o90� ( vì ˆAOC���^=90o90� )⇒^C1�1^+^D1�1^=90o90�
Gọi I là giao điểm của CA và BD . Xét ΔCID có ^C1�1^+^D1�1^=90o90�
⇒ˆCID���^=180o180�-(^C1�1^+^D1�1^)=90o90�
b)M là trung điểm của AC (gt)⇒MC=MA=AC2��2 tương tự ta có NB=ND=BD2��2 mà AC=BD(cmt)⇒MC=MA=NB=ND
Xét ΔOMC và ΔONB có MC=NB(cmt)
^C1�1^=^B1�1^(cmt)
OC=OB(gt)
Do đó ΔOMC=ΔONB(c.g.c)⇒OM=ON
c) Ta có ΔOMC=ΔONB (cmt)⇒^O1�1^=^O3�3^ (góc tương ứng )
mà ^O1�1^+^O2�2^=ˆCOt���^=90o90� (gt)⇒^O2�2^+^O3�3^=90o90�hayˆMON���^=90o90�
Gọi H là trung điểm của đoạn MN . Xét ΔMHO và ΔNHO có OH : cạnh chung , MH=NH(gt);OM=ON(cmt). Do đó ΔMHO=ΔNHO(c.c.c)⇒ˆOMH���^=ˆONH���^(góc tương ứng )
Xét ΔMON có ˆMON���^=90o90� (cmt)ˆOMH���^=ˆONH���^
Mà ˆOMH���^+ˆONH���^= 180o180�-ˆMON���^= 180o180�-90o90�=90o90�
⇒ˆOMN���^=ˆONM���^=45o45�
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a) Xét tam giác ABD và tam giác EBD có
BAD=BED(=90 ĐỘ)
ABD=EBD ( BD là tia pg của ABC)
BD cạnh chug
Do đó t/giác ABD= t/ giác EBD(chgn)
b) Vì t/giác ABC vuông ở A nên
suy ra AB^2+AC^2=BC^2 ( đl PY TA GO)
AB^2+12^2=15^2
AB^2+144=225
AB^2=81
AB^2=9^2
AB=9 cm
Mà AB=BE( t/giác ABD=t/giác EBD)
Do đó BE=9 cm
( sr bạn nhé í c mình chx nghĩ ra☹)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a, Xét tam giác AOM và tam giác BOM
Ta có: OA = OB ( giả thiết)
góc AOM = góc BOM ( Ot là tia phân giác góc xOy)
OM cạnh chung
Do đó: tam giác AOM = tam giác BOM ( c-g-c)
A t O m n B C M D
a) Tam giác vuông BOA và tam giác vuông COA có:
góc BOA = góc COA (phân giác) (1)
OA chung (2)
Từ (1) và (2) => Tam giác BOA = Tam giác COA (cạnh huyền - góc nhọn) (đpcm). => OB = OC & AB =AC
b) Ta có: OB = OC => O thuộc trung trực BC (định lý đảo) (5)
AB = AC => O thuộc trung trực BC (định lý đảo) (6)
Từ (5) và (6) => OA là trung trực của BC (đpcm). => Ot vuông góc BC (7)
c) (Hình như BD vuông góc OC tại D, ở đây mình xét trường hợp đấy)
vuông BOA và \(\Delta\)vuông COA
BD vuông góc OC tại C (8)
Từ (7) và (8) => M là trực tâm của tam giác OBC => CM là đường cao của OBC => CM vuông góc BC (đpcm).
O n m B A C M D t
a) Xét tam giác ABO và tam giác ACO có:
Góc ACO = góc ABO = 90o
AO cạnh chung
Góc AOB = góc AOC (vì OA là tia phân giác của góc mOn)
=> Tam giác ABO = tam giác ACO (cạnh huyền - góc nhọn)
b) Ta có: Tam giác ABO = tam giác ACO (cmt)
=> BO = CO (2 cạnh tương ứng)
=> Tam giác BCO cân tại O
Mà OA là đường phân giác của tam giác BCO cân tại O
=> OA là đường trung trực của BC (đpcm)
c) Xét tam giác BCO có: 2 đường cao BD và OA cắt nhau tại M
=> CM cũng là đường cao => CM vuông góc BC (đpcm)