Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\sqrt{17}+\sqrt{26}=\dfrac{9}{\sqrt{26}-\sqrt{17}}>9\)
e: \(\sqrt{13}-\sqrt{12}=\dfrac{1}{\sqrt{13}+\sqrt{12}}\)
\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
mà \(\sqrt{13}+\sqrt{12}>\sqrt{11}+\sqrt{12}\)
nên \(\sqrt{13}-\sqrt{12}< \sqrt{12}-\sqrt{11}\)
d: \(9-\sqrt{58}=\sqrt{49}-\sqrt{58}< 0< \sqrt{80}-\sqrt{59}\)
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)
=> \(\sqrt{8}+3< 6\)
Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)
=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)
=> \(\sqrt{48}+\sqrt{35}< 13\)
=> \(\sqrt{48}< 13-\sqrt{35}\)
c) Ta có \(-\sqrt{19}< -\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)
d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);
\(-\sqrt{58}>-\sqrt{59}\)
=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
1) \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{26}>\sqrt{25}=5\)
Vế cộng vế ta có: \(\sqrt{17}+\sqrt{26}>9\)
2) Ta có: \(13-\sqrt{35}>13-\sqrt{36}=13-6=7\left(1\right)\)
\(\sqrt{48}< \sqrt{49}=7\left(2\right)\)
Từ (1);(2), Suy ra: \(13-\sqrt{35}>\sqrt{48}\)
\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)
\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)
\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)
\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)
\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)
Bài 3:
a) Ta có: \(4+2\sqrt{3}\)
\(=3+2\cdot\sqrt{3}\cdot1+1\)
\(=\left(\sqrt{3}+1\right)^2\)
b) Ta có: \(7+4\sqrt{3}\)
\(=4+2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2+\sqrt{3}\right)^2\)
c) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)
d) Ta có: \(31+10\sqrt{6}\)
\(=25+2\cdot5\cdot\sqrt{6}+6\)
\(=\left(5+\sqrt{6}\right)^2\)
e) Ta có: \(13+4\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot1+1\)
\(=\left(2\sqrt{3}+1\right)^2\)
g) Ta có: \(21+12\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot3+9\)
\(=\left(2\sqrt{3}+3\right)^2\)
h) Ta có: \(29+12\sqrt{5}\)
\(=20+2\cdot2\sqrt{5}\cdot3+3\)
\(=\left(2\sqrt{5}+3\right)^2\)
i) Ta có: \(49+8\sqrt{3}\)
\(=48+2\cdot4\sqrt{3}\cdot1\)
\(=\left(4\sqrt{3}+1\right)^2\)
k) Sửa đề: \(14-6\sqrt{5}\)
Ta có: \(14-6\sqrt{5}\)
\(=9-2\cdot3\cdot\sqrt{5}+5\)
\(=\left(3-\sqrt{5}\right)^2\)
l) Ta có: \(23-8\sqrt{7}\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=\left(4-\sqrt{7}\right)^2\)
m) Ta có: \(15-4\sqrt{11}\)
\(=11-2\cdot\sqrt{11}\cdot2+4\)
\(=\left(\sqrt{11}-2\right)^2\)
n) Sửa đề: \(28-10\sqrt{3}\)
Ta có: \(28-10\sqrt{3}\)
\(=25-2\cdot5\cdot\sqrt{3}+3\)
\(=\left(5-\sqrt{3}\right)^2\)
o) Ta có: \(17-12\sqrt{2}\)
\(=9-2\cdot3\cdot2\sqrt{2}+8\)
\(=\left(3-2\sqrt{2}\right)^2\)
p) Ta có: \(43-30\sqrt{2}\)
\(=25-2\cdot5\cdot3\sqrt{2}+18\)
\(=\left(5-3\sqrt{2}\right)^2\)
q) Ta có: \(51-10\sqrt{2}\)
\(=50-2\cdot5\sqrt{2}\cdot1\)
\(=\left(5\sqrt{2}-1\right)^2\)
r) Ta có: \(49-12\sqrt{5}\)
\(=45-2\cdot3\sqrt{5}\cdot2+4\)
\(=\left(3\sqrt{5}-2\right)^2\)