Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu \(31\) này mk giải bằng tay nha . mk không biết cách bấm máy mấy bài bày :(
đặc : \(z=a+bi\) với (\(a\overset{.}{,}b\in R\) và \(i^2=-1\))
ta có : \(\left|z-1-2i\right|=4\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2=16\)
\(\Leftrightarrow a^2+b^2=2a+4b+11\)
ta có : \(\left|z+2+i\right|=\sqrt{\left(a+2\right)^2+\left(b+1\right)^2}=\sqrt{a^2+b^2+4a+2b+5}\)
\(=\sqrt{2a+4b+11+4a+2b+5}=\sqrt{6\left(a-1\right)+6\left(b-2\right)+34}\)
áp dụng Bunhiacopxki ta có :
\(\sqrt{\left(6^2+6^2\right)\left[\left(a-1\right)^2+\left(b-2\right)^2\right]}\ge6\left(a-1\right)+6\left(b-2\right)\ge-\sqrt{\left(6^2+6^2\right)\left[\left(a-1\right)^2+\left(b-2\right)^2\right]}\)
\(\Leftrightarrow\sqrt{\left(6^2+6^2\right)\left(16\right)}\ge6\left(a-1\right)+6\left(b-2\right)\ge-\sqrt{\left(6^2+6^2\right)\left(16\right)}\)
\(\Leftrightarrow24\sqrt{2}\ge6\left(a-1\right)+6\left(b-2\right)\ge-24\sqrt{2}\)\(\Rightarrow\sqrt{24\sqrt{2}+34}\ge\sqrt{6\left(a-1\right)+6\left(b-2\right)+34}\ge\sqrt{-24\sqrt{2}+34}\)
\(\Rightarrow\) min của \(\left|z+2+i\right|\) là \(m=\sqrt{-24\sqrt{2}+34}\) và max của \(\left|z+2+i\right|\) là \(M=\sqrt{24\sqrt{2}+34}\)
\(\Rightarrow M^2+m^2=\left(\sqrt{24\sqrt{2}+34}\right)^2+\left(\sqrt{-24\sqrt{2}+34}\right)^2=64\)
bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với
Mình nghĩ câu nói này của Bác mang ý nghĩa: Làm việc gì cũng phải chắc chắn, có lý luận, có hiểu biết thì ta mới giải được vấn đề.
Đúng k mình nha
#Hoctot
“Lý luận như cái kim chỉ nam, nó chỉ phương hướng cho chúng ta trong công việc thực tế.
Không có lý luận thì lúng túng như nhắm mắt mà đi…
Có kinh nghiệm mà không có lý luận, cũng như một mắt sáng, một mắt mờ…
Lý luận mà không áp dụng vào thực tế là lý luận suông”.
Vai trò quan trọng như vậy, nhưng “kém lý luận” vẫn là căn bệnh đang tồn tại ở một bộ phận không nhỏ cán bộ, đảng viên.
ta có :
\(PT\Leftrightarrow\frac{2f\left(x\right)}{f^2\left(x\right)-1}=\frac{2}{x^2}\Leftrightarrow f^2\left(x\right)-x^2f\left(x\right)-1=0\Leftrightarrow\orbr{\begin{cases}f\left(x\right)=\frac{x^2+\sqrt{x^4+4}}{2}\\f\left(x\right)=\frac{x^2-\sqrt{x^4+4}}{2}\end{cases}}\)
bằng cách lập bảng biến thiên ta xác định được phương trình trên có 4 nghiệm
Câu 1:
\(w=(z-2+3i)(\overline{z}+1-2i)\) \(\in \mathbb{R}\)
\(\Leftrightarrow |z|^2+z(1-2i)+(3i-2)\overline{z}+4+7i\in\mathbb{R}\)
Đặt \(z=a+bi\Rightarrow (a+bi)(1-2i)+(3i-2)(a-bi)+7i\in\mathbb{R}\)
\(\Leftrightarrow -2a+b+3a+2b+7=0\) (phần ảo bằng 0)
\(\Leftrightarrow a+3b+7=0\)
Khi đó \(|z|=\sqrt{a^2+b^2}=\sqrt{b^2+(3b+7)^2}=\sqrt{10(b+2,1)^2+4,9}\) min khi \(b=-2,1\) kéo theo \(a=-0,7\)
Đáp án A.
Câu 2:
Từ \(|iz+1|=2\Rightarrow |z-i|=2|-i|=2\)
Nếu đặt \(z=a+bi\) ta dễ thấy tập hợp các điểm biểu diễn số phức $z$ là điểm $M$ nằm trên đường tròn tâm \(I(0,1)\) bán kính bằng $2$
Hiển nhiên \(|z-2|\) là độ dài của điểm điểm \(M\) biểu diễn $z$ đến điểm \(A(2,0)\). Ta thấy $MA$ max khi $M$ là giao điểm của $AI$ với đường tròn $(I)$
Ta có \(IA=\sqrt{IO^2+OA^2}=\sqrt{5}\)
\(\Rightarrow MA_{\max}=MI+IA=2+\sqrt{5}\)
Đáp án A.
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
47. y=x ĐA: D
48. A(-4;0); B(0;4); C(x; 3)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)
A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D
49.A(2;-2); B(3;1); C(0;2)
\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)
=>Tam giác vuông cân=> ĐA:C
51. ĐA:D
52: A(-1;3); B(-3;-2); C(4;1)
\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)
ĐA: C
Độ PH của mẫu 1 là:
\(a=-log\left[H^+\right]=-log\left[8\cdot10^{-7}\right]=-\left(log8-7\right)\)
\(=7-log8=7-log2^3=7-3\cdot log2\)
Độ PH của mẫu 2 là:
\(b=-log\left[2\cdot10^{-9}\right]=-\left(log2-9\right)=9-log2\)
\(a-b=7-3\cdot log2-9+log2=-2log2-2< 0\)
=>a<b
=>Độ PH của mẫu 2 lớn hơn