Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c.
Theo đề bài, ta có: a+b+c= 126 (m)
và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)
\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)
\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)
Đến đây tự tìm a,b,c.
Bài 2:
Gọi số sách ở 3 tủ lần lượt là a,b,c:
Theo đề bài, ta có: a+b+c = 2250
và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)
Tự tìm tiếp nha.
Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .
Theo đề, ta có; b - d = 70
và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)
\(\Rightarrow a=9k\)
\(b=8k\)
\(c=7k\)
\(d=6k\)
Thay b= 8k và d=6k vào b-d= 70:
8k - 6k = 70
2k = 70
k= 35
=> a=9k = 9* 35 = 315
(tìm b,c,d tương tự như tìm a. Sau đó kết luận)
Bài 5: Gọi số lãi của 2 tổ là a và b.
Theo đề , ta có: a+b = 12 800 000
và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)
(tự tìm a,b)
Bài 6:
Gọi độ dài 3 cạnh của tam giác đó là a,b,c:
Theo đề, ta có: a+b+c=22
và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)
=> (tự tìm a,b,c)
a. Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)
=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)
Vậy x=12; y=30.
b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)
=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)
=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)
+) x-0,25=2,5
=> x=2,5+0,25
=> x=2,75
+) x-0,25=-2,5
=> x=-2,5+0,25
=> x=-2,25
Vậy x \(\in\){-2,25; 2,75}.
c. y=kx
=> -17=k.8
=> k=-17/8
Vậy hệ số tỉ lệ là -17/8.
a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=> x=12 ; y = 30
b) \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)
=> x-0,25 = 2,5 hoac: -2,5
=> x = 2,75 hoac x= -2,25
Vay: x la { 2,75 ; -2,25 }
c) Ti le gi vay ban.
Neu thuan thi he so ti le la: \(-\frac{17}{8}\)
Neu nghich thi he so ti le la : -136
Theo đề bài ta có :
a : b : c = 2 : 3 : 4 và a + c = b + 6
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => a + c - b = 6
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a-b+c}{2-3+4}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}a=2.2=4\\b=3.2=6\\c=4.2=8\end{cases}\)
Vậy a có 4 cái điểm 10
b có 6 cái điểm 10
c có 8 cái điểm 10
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)