Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tứ giác AEDC có
IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
b/
Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Mà DC=DB => AE=BD
\(DB\in DC\) => AE//DB
=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh)
=> EB=AD và EB//AD (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)
c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB
d/ Xét \(\Delta ABD\)
JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC
\(\Rightarrow IJ=\frac{DB}{2}\)
Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)
\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)
e/
Xét HCN AEBD có
\(\Rightarrow JE=JD=\frac{ED}{2}\) (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông EKD có
\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)
Xét \(\Delta AKB\)
\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)
\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)
f/
Xét tg vuông IBD và tg vuông ICD có
ID chung
DB=DC (cmt)
\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)
Xét tg vuông IDK
\(\widehat{IDK}+\widehat{CID}=90^o\)
Xét tg vuông ICD
\(\widehat{ICD}+\widehat{CID}=90^o\)
\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)
Bài 1 :
a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)
b ) Từ \(x\):\(\left(-7\right)\)= \(y\): \(10\)
\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)
c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)
d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)
Áp dugj tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)
Bài 2 :
a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)
b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
a) Ta có :
\(x - y = 5\)
\(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5 . 2 = -10\\y=-5.3=-15\end{cases}}\)
b) Ta có :
\(x - y = 9\)
\(\frac{x}{-2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{-2}=\frac{y}{-5}=\frac{x-y}{-2-\left(-5\right)}=\frac{9}{3}=3\)
\(\Rightarrow\hept{\begin{cases}x=3. \left(-2 \right)= -6\\y=3 . \left(-5\right) = -15\end{cases}}\)