Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
ta có : Do NB song song với MA nên
\(\hept{\begin{cases}\widehat{ABN}+\widehat{MAB}=180^0\\\widehat{ABN}-\widehat{MAB}=40^0\end{cases}}\Rightarrow2\widehat{MAB}=180^0-40^0=140^0\)
Nên \(\widehat{MAB}=70^0\)
Bài 72 :
a) Vì \(\left|2x-\frac{1}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|-\frac{7}{4}\ge-\frac{7}{4}\forall x\)
\(\Rightarrow A\ge-\frac{7}{4}\)
Dấu "=" xảy ra <=> \(\left|2x-\frac{1}{3}\right|=0\)
\(\Leftrightarrow2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)
b) Vì \(\hept{\begin{cases}\frac{1}{3}\left|x-2\right|\ge0∀x\\2\left|3-\frac{1}{2}y\right|\ge0∀y\end{cases}}\)\(\Rightarrow\frac{1}{3}\left|x-2\right|+2\left|3-\frac{1}{2}y\right|+4\ge4∀y\)
=> B ≥ 4
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|3-\frac{1}{2}y\right|=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=0\\3-\frac{1}{2}y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\\frac{1}{2}y=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)
Bài 73 :
a) Vì | 1 + 2x | ≥ 0 ∀ x
\(\Rightarrow\frac{1}{4}\left|1+2x\right|\ge0\forall x\)
\(\Rightarrow2,25-\frac{1}{4}\left|1+2x\right|\le2,25\forall x\)
=> A ≤ 2,25
Dấu "=" xảy ra <=> | 1 + 2x | = 0 <=> 1 + 2x = 0 <=> 2x = -1 <=> \(x=\frac{-1}{2}\)
b) Vì | 2x - 3 | ≥ 0 ∀ x
\(\Rightarrow\frac{1}{2}\left|2x-3\right|\ge0\forall x\)
\(\Rightarrow3+\frac{1}{2}\left|2x-3\right|\ge3\forall x\)
\(\Rightarrow\frac{1}{3+\frac{1}{2}\left|2x-3\right|}\le\frac{1}{3}\forall x\)
\(\Rightarrow B\le\frac{1}{3}\)
Dấu "=" xảy ra <=> | 2x - 3 | = 0 <=> 2x - 3 = 0 <=> 2x = 3 \(\Leftrightarrow x=\frac{3}{2}\)