Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem ai thông minh, tinh mắt nhất có thể luận ra toàn bộ đề và giúp mk giải nào!!
Theo mk được biết thì Shinichi và Kid là hai anh em nên mk thích cả hai
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-\left(2+1+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{200-2-1-\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-...-\dfrac{2}{100}}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =2\)
Đề nhỏ quá!! mà t 4 mắt. cẩn thận
Đặt :
\(A=\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+.............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....................+\dfrac{99}{100}}\)
\(A=\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+..............+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+.................+1-\dfrac{1}{100}}\)
\(A=\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+..................+\dfrac{2}{100}\right)}{\left(1+1+.....+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+...........+\dfrac{1}{100}\right)}\)
\(A=\dfrac{2\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+.............+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+..............+\dfrac{1}{100}\right)}\)
\(A=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...............+\dfrac{99}{100}}=2\rightarrowđpcm\)
Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\)
Theo đề, ta có: \(\dfrac{a}{b}=\dfrac{34}{119}\)
=>\(\dfrac{a}{b}=\dfrac{2}{7}\)
=>\(\dfrac{a}{2}=\dfrac{b}{7}\)
BCNN(a;b)=126
=>\(\left\{{}\begin{matrix}a⋮126\\b⋮126\end{matrix}\right.\)
=>a=126:7=18; b=126:2=63
=>Phân số cần tìm là \(\dfrac{18}{63}\)