Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y+x-y}{5+8}=\dfrac{2x}{13}=\dfrac{4x}{26}\)
Ta có:
\(\dfrac{x+y}{5}=\dfrac{xy}{26};\dfrac{x+y}{5}=\dfrac{4x}{26}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{4x}{26}\Rightarrow y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y-x+y}{5-8}=\dfrac{2y}{-3}\)
Ta có:
\(\dfrac{x-y}{8}=\dfrac{xy}{26};\dfrac{x-y}{8}=\dfrac{2y}{-3}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{2y}{-3}\Rightarrow-3xy=52y\Leftrightarrow-3x=52\Rightarrow x=\dfrac{-52}{3}\)
Vậy \(x=-\dfrac{52}{3};y=4\)
Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2015k\\y=2016k\\z=2017k\end{matrix}\right.\)
\(\Rightarrow\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]\)
\(=\left(2015k-2017k\right)^3\div\left[\left(2015k-2016k\right)^2\left(2016k-2017k\right)\right]\)
\(=\left(-2k\right)^3\div\left[-k^2\left(-k\right)\right]\)
\(=-8k^3\div\left(-k\right)^3\)
\(=8\)
Vậy \(\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]=8\)
ta có x=9+y
thay x=9+y vào biểu thức B ta có:
B=\(\dfrac{7\left(9+y\right)-9}{6\left(9+y\right)+y}\)+\(\dfrac{7\left(9+y\right)+9}{8\left(9+y\right)-y}\)
B=\(\dfrac{63+7y-9}{54+6y+y}\)+\(\dfrac{63+7y+9}{72+8y-y}\)
B=\(\dfrac{54+7y}{54+7y}\)+\(\dfrac{72+7y}{72+7y}\)
B=1+1
B=2
Bài 1:
a. $x:(\frac{-5}{9})^8=(\frac{-9}{5})^8$
$x=(\frac{-9}{5})^8.(\frac{-5}{9})^8=(\frac{-9}{5}.\frac{-5}{9})^8=1^8$
$x=1$
b. $(x+5)^3=-27=(-3)^3$
$x+5=-3$
$x=-8$
c.
$(2x+5)^4=4096=8^4=(-8)^4$
$\Rightarrow 2x+5=8$ hoặc $2x+5=-8$
$\Leftrightarrow x=\frac{3}{2}$ hoặc $x=-\frac{13}{2}$
d. $3^{x+1}=243=3^5$
$\Leftrightarrow x+1=5$
$\Leftrightarrow x=4$
e.
$\frac{-32}{(-2)^x}=4$
$(-2)^x=-8=(-2)^3$
$\Leftrightarrow x=3$
f.
$7^{x+2}+2.7^{x-1}=345$
$7^{x-1}(7^3+2)=345$
$7^{x-1}.345=345$
$7^{x-1}=1=7^0$
$\Rightarrow x-1=0\Leftrightarrow x=1$
Bài 2:
Ta thấy:
$2^{30}=(2^3)^{10}=8^{10}< 9^{10}=(3^2)^{10}=3^{20}$
Vậy $2^{30}< 3^{20}$
-------------------------
$5^{202}$ và $2^{505}$
$5^{202}=(5^2)^{101}=25^{101}< 32^{101}=(2^5)^{101}=2^{505}$
Vậy $5^{202}< 2^{505}$