">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi 2 đường phân giác trong BN, CM bằng nhau
dựng hình bình hành BMDN và kí hiệu các góc α,β,γ,δα,β,γ,δ như hình vẽ
tam giác CMD cân tại M nên α+γ=β+δα+γ=β+δ (1)
nếu α>βα>β thì xét hai tam giác BCN và CBM có BC chung, BN=CM,CBNˆ>BCMˆ⇒CN>BMBN=CM,CBN^>BCM^⇒CN>BM
BM=ND⇒γ>δ⇒α+γ>β+δBM=ND⇒γ>δ⇒α+γ>β+δ, mâu thuẫn với (1)
tương tự, ko thể xảy ra trường hợp α<βα<β
suy ra α=βα=β, đpcm

a: \(3x^2+y^2+10x-2xy+26=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)

b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)

25 tháng 4 2020

A D I E F K G B H C

Gọi I = DE \(\cap\)AH

K = FG \(\cap\)AH

a) DE // BC

=> \(\frac{AD}{AB}=\frac{DE}{BC}=\frac{AI}{AH}=\frac{1}{3}\)

=> DE = \(\frac{BC}{3}=\frac{15}{3}=5\)

FG // BC

=> \(\frac{AK}{AH}=\frac{FG}{BC}=\frac{2}{3}\)

=> FG = \(\frac{2}{3}.BC=\frac{2}{3}.15=10\)

b) SABC= \(\frac{1}{2}.AH.BC=270\)

\(\frac{1}{2}AH.15=270\)

AH =36

=> IK = \(\frac{1}{3}.AH=\frac{36}{3}=12\)

=> SDEGF = \(\frac{1}{2} \left(DE+FG\right).IK\)

= \(\frac{1}{2}.\left(5+10\right).12\)

= 90cm2

20 tháng 12 2016

bài 1

P= 5x2+2y2+4xy-4x+8y+25

= (4x2 +4xy+y2) + (x2-4x+4)+(y2 +8y +16)+5

= (2x+y)2+ (x-2)2+(y+4)2+5 lớn hơn hoặc bằng 5 với mọi x,y

dấu ''='' xảy ra <=> \(\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}\)

<=>\(\begin{cases}2x=-y\\x=2\\y=-4\end{cases}\)

<=> x= 2 và y =-4

vậy GTNN của P = 5 <=> x= 2 và y =-4

20 tháng 12 2016

câu 2

Giải 1.

Xét tứ giác ADHE có

góc DAE = góc ADH = góc AEH =90 độ (gt)

=> tứ giác ADHE là hình chứ nhật (dhnb)

Vậy tứ giác ADHE là hình chữ nhật

giải 2. giả sử AH cắt DE tại O . nối O với M

xét tam giác HEC vuông tại E( HE vuông góc với EC) có

EM là đường trung tuyến ứng với cạnh HC ( M là trung điểm HC)

=> EM = 1/2HC (t/c)

mà HM = 1/2 HC(M là trung điểm của HC)

=> EM=HM

Xét hình chữ nhật ADHE có : AH giao với DE tại O (gt)

=> O là trung điểm của AH và O là trung điểm DE (t/c)

mà AH=DE ( tứ giác ADHE là hình chữ nhật)

=> OH=OE

Xét tam giác OHM và tam giác OEM có

OH =OE(cmt)

HM= EM (cmt)

OM chung

do đó tam giác OHM = tam giác OEM (c-c-c)

=> góc OHM = góc OEM (2 góc tương ứng)

mà góc OHM=90 độ ( AH vuông góc với HC)=> góc OEM =90 độ hay góc DEM= 90 độ

Xét tam giác DEM có góc DEM 90 độ => tam giác DEM vuông tại E

Vậy tam giác DEM vuông tại E

giải 3: giải sử DE=2EM

mà DE= AH (cmt) và HC=2EM(cmt)

=> AH= HC

=> tam giác AHC cân tại H (dhnb) mà AHC=90 độ (AH vuông góc vs HC)

=> tam giác AHC vuông cân tại H ( dnhn)

=> góc ACH= 45 độ

Xét tam giác ABC vuông tại A có

góc ABC + góc ACB=90 độ (t/c)

=> góc ABC = 90độ - 45 độ = 45 độ

=>góc ABC = góc CAB

do đó tam giác ABC vuông cân (dhnb)

Vậy tam giác ABC vuông cân thì DE=2EM