K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Đặt \(t=2^x\)

Phương trình sẽ trở thành:

\(-t^2+3t-2=0\)

=>\(\left(t^2-3t+2\right)=0\)

=>\(\left(t-1\right)\left(t-2\right)=0\)

=>\(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2^x=1\\2^x=2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x_1+x_2=0+1=1\)

20 tháng 5 2017

Đáp án D.

ĐK: x > 2.

TH1: Ta thấy x = 3 không phải là nghiệm của PT.

TH2: Với x ≠ 3  logarit cơ số x – 2 cả 2 vế ta được

NV
16 tháng 1 2024

\(\Leftrightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{4}{3}\right)^{\dfrac{4}{x}}=\dfrac{9}{16}\)

\(\Rightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{3}{4}\right)^{-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow\left(\dfrac{3}{4}\right)^{x-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x-\dfrac{4}{x}=2\)

\(\Rightarrow x^2-2x-4=0\)

Viet: \(x_1+x_2=2\)

14 tháng 1 2017

17 tháng 12 2019

Chọn D

8 tháng 10 2017

28 tháng 5 2018

Chọn C.

4 tháng 12 2018

Đáp án D

Phương pháp:

Đặt 2x = t, t > 0. Chuyển về bài toán tìm m để phương trình bậc 2 ẩn t có 2 nghiệm t1, t2 thỏa mãn t1.t2 = 8

Cách giải:


Để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 + x2 = 3 thì phương trình (2) có 2 nghiệm t1,t2 thỏa mãn t1.t2 = 2x1.2x2 = 2x1 + x2 = 23 = 8

Khi đó:

21 tháng 7 2019

Chọn B

21 tháng 5 2019