K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

(Bạn tự vẽ hình nha)

- Xét tam giác ACD có: M là trung điểm của AD

                                 N là trung điểm của AC

=> MN là đường trung bình của tam giác ACD

=> MN // CD (1)

Tương tự: -Xét tam giác ABC có: N là trung điểm của AC

                                                  P là trung điểm của BC

=> NP là đường trung bình của tam giác ABC

=> NP // AB  (2)

Từ (1) và (2) kết hợp với: AB // CD (ABCD là hình thang)

=> \(MN\equiv NP\)

=> M;N;P thẳng hàng (ĐPCM)

23 tháng 7 2017

sử dụng tích chất đường trung bình để chứng minh MN//DC;NP//AB

mặt khác AB//CD=>MN//NP

theo tiên đề ơ-clit thì MN//NP cùng đi qua N nên M;N;P thẳng hàng

13 tháng 11 2021

alodgdhgjkhukljhkljyutfruftyhf

26 tháng 6 2018

giúp vs

2 tháng 9 2021

a) Xét tg DAB có AM=MD (gt)

                          DP=PB(gt)

=> MP là dg tb tg DAB => MP //AB          (1)

Xét tg BDC có BN=NC(gt)

                       DO=PB(gt)

=> PN là dg tb tg DBC=> PN//DC. Mà DC//AB ( hthang ABCD)

=> PN//AB.                                              (2)

Từ (1) và (2) => M,N,P thẳng hàng 

b) Xét tg ABC có BN=NC(gt)

                            NK//AB( MN//AB)

=> K td AC

C) xét tg ABCD có AM=MD(gt)

                                BN=NC(gt)

=> MN là dg tb tg ABCD => MN=(AB+CD)/2          (1)

ta có MP là dg tb tg ABD(cmt)=> MP=1/2AB=AB/2         (2)

 Ta có NK là dg tb tg ABC(cmt) =>NK=1/2AB=AB/2.       (3)

Mà ta có MN= MP+PK+NK                                              (4)

Từ (1)(2)(3)(4) suy ra

(AB+CD)/2 = AB/2+AB/2+PK

<=> (AB+CD-AB-AB)/2=PK

<=>(-AB+CD)/2=PK

=> (CD-AB):2=PK

 

a: Xét ΔDAB có

M là trung điểm của AD

P là trung điểm của BD

Do đó: MP là đường trung bình của ΔDAB

Suy ra: MP//AB

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: MN//AB//CD

Ta có: MN//AB

MP//AB

mà MN và MP có điểm chung là M

nên M,N,P thẳng hàng

b: Xét ΔABC có 

N là trung điểm của BC

NK//AB

Do đó: K là trung điểm của AC

a: Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACD}=\widehat{ACB}\)

hay CA là tia phân giác của góc BCD

b: Xét ΔDBA có 

M là trung điểm của AD

F là trung điểm của BD

Do đó: MF là đường trung bình

=>MF//AB

hay MF//CD(1)

Xét ΔADC có

M là trung điểm của AD

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//DC(2)

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//CD//AB(3)

Từ (1), (2) và (3) suy ra M,F,E,N thẳng hàng