Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMDN, ta có:
^A = ^N = ^M = 90o (gt)
Vậy tứ giác AMDN là hình chữ nhật.
b) *Xét △ABD, ta có:
K là trung điểm BD (gt)
I là trung điểm AD (gt)
⇒ KI là đường trung bình của △ABD.
⇒ KI // AB và KI = 12
AB. (1)
*Ta có:
DN ⊥ AC (gt)
AB ⊥ AC (△ABC vuông tại A)
⇒ DN // AB. (2)
Từ (1) và (2) suy ra KI // DN
*Xét △v ABC, ta có:
BD = CD (gt)
⇒ AD là đường trung tuyến
⇒ AD = BD = 12
AC
⇒ △ABD cân tại D
Mà DM ⊥ AB
⇒ DM là đường cao đồng thời là đường trung tuyến
⇒ MA = MB
*Ta có:
MA = 12
AB (cmt)
KI = 12
AB (cmt)
⇒MA = KI
Mà MA = DN (AMDN là hình chữ nhật)
Nên KI = DN
*Ta có:
KI // DN (cmt)
KI = DN (cmt)
Vậy INDK là hình bình hành
c) *Ta có:
KI //AM (KI // AB)
DM ⊥ AM (gt)
⇒KI ⊥ DM
*Xét tứ giác DIMK, ta có:
KI ⊥ DM (cmt)
Vậy DIMK là hình thoi.
d) Xét hình chữ nhật AMDN, ta có:
MN, AD là hai đường chéo
Mà I là trung điểm AD (gt)
Nên I là trung điểm MN
Vậy M, N đối xứng với nhau qua I.
Ta có tam giác ABP vuông tại A vì AB vuông góc với AC (do đường cao AH). Ta cần chứng minh tam giác ABP cân. Gọi M là trung điểm của AB. Ta có AM = MB (do tam giác ABC vuông cân tại A). Vì hình vuông AHKE nên AH = HE. Do đó, ta có AM = MB = HE. Vậy, tam giác ABP cân (do AB = AP và AM = HE).
Ta cần chứng minh ba điểm H, I, E thẳng hàng. Gọi N là trung điểm của AP. Ta có AN = NP (do hình bình hành APQB). Vì hình vuông AHKE nên AH = HE. Do đó, ta có AN = NP = HE. Vậy, ba điểm H, I, E thẳng hàng.
Tứ giác HEKQ là hình bình hành. Vì HE = KQ (do hình bình hành APQB) và HE // KQ (do cạnh HE song song với cạnh KQ). Do đó, tứ giác HEKQ là hình bình hành. Tứ giác HEKQ cũng là hình chữ nhật vì HE = KQ và HK // EQ (do cạnh HE song song với cạnh KQ và cạnh HK song song với cạnh EQ).
A B C D E H Q P O
a) Tg ADHE có \(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^o\)
=> Tg ADHE là hcn
=> DE = AH ( t/c hcn )
b) ΔECH vuông ở E => EQ = HQ = \(\dfrac{1}{2}HC\)
+)Tg ADHE là hcn
=> OH = OE = OD
+)Xét ΔQEO và ΔQHO có :
HQ = EQ ( cmt )
OH = OE ( cmt )
OQ chung
=> ΔQEO = ΔQHO ( c.c.c )
=> \(\widehat{OHQ}=\widehat{OEQ}\\ mà:\widehat{OHQ}=90^o\Rightarrow\widehat{QEO}=90^o\Rightarrow EQ\perp DE\)
cmtt , được ΔDPO = ΔHPO ( c.c.c ) => PD ⊥ DE
+) \(EQ\perp DE\\ PD\perp DE\) ( cmt ) ==> EQ // PD => Tg DEQP là hình thang
mà \(\widehat{PDE}=90^o\left(cmt\right)\) => Tg DEQP là hình thang cân
c) Dễ c/m được QO là đường trung bình ΔAHC
=> QO // AC mà AC ⊥ AB => QO ⊥ AB
=> QO là đường cao ΔABQ tại đỉnh B
+) ΔABQ có AH , QO lần lượt là đường cao của BQ và AB
mà \(AH\cap QOtạiO\)
=> O là trực tâm ΔABQ
d) Ta có :
\(S_{ABC}=\dfrac{1}{2}BC\cdot AH\\ =\dfrac{1}{2}\left(BH+CH\right)\cdot DE\\ =\dfrac{1}{2}\left(2DP+2EQ\right)\cdot DE\\ =\dfrac{1}{2}\cdot2\cdot\left(DP+EQ\right)\cdot DE\\ =\left(DP+EQ\right)\cdot ED\)
\(S_{DEQP}=\dfrac{1}{2}\left(DP+EQ\right)\cdot ED\)
mà SABC = ( DP + EQ ) . DE
=> SABC = 2SDEQP
\(a^3+b^3=2.\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^2-15d^3⋮3\)
\(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\Rightarrow a+b+c+d⋮3\)
tự c/n \(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\)nha, gợi ý 1 cái rồi còn lại tương tự
\(a^3-a=a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)chia hết cho 3( vì a,b,c,d thuộc Z)
ợ mk ngu toán lắm, bn lm ơn giải rõ ràng ra hộ nhaaa
a, xét tam giác ABC và tam giác DAB có:
góc BAC = góc ADB=90 độ
góc ABC = góc BAD( so le trong của Ax//BC)
do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)
b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
theo cm câu a : tam giác ABC đồng dạng với tam giác DAB
=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)
\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)
c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)