Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)D=4x(x+y)-5y(x+y)-4x2
=4x2+4xy-5xy-5y2-4x2
=4x2-4x2+4xy-5xy-5y2
=-xy-5y2
b)E=(a-1)(x2+1)-x(y+1)+(x+y2-x+1)
=a.(x2+1)-1.(x2+1)-xy-x+x+y2-x+1
=ax2+a-x2-1-xy-x+x+y2-x+1
=ax2-x2-x+x-x-xy+y2-1+1+a
=(a-1)x2-x-xy+y2+a
TRời làm vậy mà chả ai **** tốt nhất đừng làm nữa trieu dang
tách sai rồi bạn ơi
phải là
\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)
=\(2x^4y^5+3x^4y^5\)
=\(5x^4y^5\)
\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)
\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)
\(=\left(-1\right)x^4.y^5+2x^4y^5\)
\(=x^4y^5\)
Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
Mà \(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Mà \(A=x^4y^5\)
\(\Leftrightarrow A=2^4.\left(-1\right)^5\)
\(\Leftrightarrow A=-16\)
\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)
\(\Rightarrow\) đa thức bậc 4
b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)
\(=-3x^2y-x^2y-6x^2y\)
\(=-10x^2y\)
Thay \(x=1;y=-1\) vào đa thức ta có:
\(-10x^2y=-10.1^2.\left(-1\right)=10\)
Làm lại :
\(E=\left(a-1\right)\left(x^2+1\right)-x\left(y+1\right)+\left(x+y^2-a+1\right)\)
\(=ax^2+a-x^2-1-xy-x+x+y^2-a+1\)
\(=ax^2+a-a-x^2-1+1-xy-x+x+y^2\)
\(=ax^2-x^2-xy+y^2\)
Giúp em với chị Trần Thùy Dung