K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

bn chỉ cần huy động 01 noron thần kinh là bit

GTNN = -32

10 tháng 9 2016

\(A=x^4+5x^2-32\) 

\(=x^4+5x^2+\frac{25}{4}-\frac{153}{4}\) 

\(=\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}\) 

Có: \(\left(x^2+\frac{5}{2}\right)^2\ge0\) 

\(\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}\ge-\frac{153}{4}\) 

Mà: \(x^2\ge0\Rightarrow\left(x^2+\frac{5}{2}\right)^2\ge\left(\frac{5}{2}\right)^2\) 

Dấu '=' xảy ra khi: \(\left(x^2+\frac{5}{2}\right)^2=\left(\frac{5}{2}\right)^2\Rightarrow x^2+\frac{5}{2}=\frac{5}{2}\Rightarrow x=0\) 

Thay vào: \(\left(x^2+\frac{5}{2}\right)^2-\frac{153}{4}=\frac{25}{4}-\frac{153}{4}=-32\) 

Vậy: \(Min_A=-32\) tại \(x=0\)

18 tháng 9 2016

fyhrtfyhtfuyhtfutfguhtf

18 tháng 9 2016

Vì A = x4 + 5x2 - 32 tức A bằng : x . x . x . x + x . x + x . x + x . x + x . x + x . x  - 32

Nên x phải bằng 0 để x . x = 0 và x + x = 0 + 0 = 0

Vậy ta có A = 0 - 32 = ( - 32  )

Giá trị nhỏ nhất của A là ( - 32 )

( nếu thấy đúng thì kick mình nhé ) 

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)

NM
10 tháng 10 2021

ta có:

undefined