\(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Giải:

Nhận xét: Từ phương trình suy ra \(x>0\)

Ta có:

\(PT\Leftrightarrow\sqrt{x^2+\dfrac{4}{x^2}-1}+\sqrt{x^2+\dfrac{4}{x^2}+20}=7\)

Đặt \(t=x^2+\dfrac{4}{x^2}-1\ge0\) ta được phương trình:

\(\sqrt{t}+\sqrt{t+21}=7\)

\(\Leftrightarrow\left(\sqrt{t}-2\right)\left(\sqrt{t+21}-5\right)=0\)

\(\Leftrightarrow\left(t-4\right)\left(\dfrac{1}{\sqrt{t}+2}+\dfrac{1}{\sqrt{t+21}+5}\right)=0\)

\(\Leftrightarrow t=4\). Ta được: \(x^2+\dfrac{4}{x^2}-1=4\)

\(\Leftrightarrow x^4-5x^2+4=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (do \(x>0\))

Vậy phương trình đã cho có 2 nghiệm là \(\left\{1;2\right\}\)

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

1 tháng 7 2019

tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,

Akai Haruma, @Nguyễn Việt Lâm

giúp mk vs! ngày mai phải nộp r

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

9 tháng 8 2017

\(PT\Leftrightarrow7x^2-x+4-2\sqrt{2\left(3x^2-1\right)}-2\sqrt{2\left(x^2-x\right)}+2x\sqrt{2\left(x^2+1\right)}=0\)

\(\Leftrightarrow\left(3x^2-1-2\sqrt{2\left(3x^2-1\right)}+2\right)+\left(x^2-x-2\sqrt{2\left(x^2-x\right)}+2\right)+\left(2x^2+2x\sqrt{2\left(x^2+1\right)}+x^2+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x^2-1}-\sqrt{2}\right)^2+\left(\sqrt{x^2-x}-\sqrt{2}\right)^2+\left(\sqrt{2}x+\sqrt{x^2+1}\right)^2=0\)

Dấu = xảy ra khi x = - 1

9 tháng 8 2017

hình như bài này C-S đc 

1 tháng 7 2019

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

1 tháng 7 2019

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

14 tháng 11 2018

a) ĐKXĐ: 1 ≥ x ≥ -1

Ta có: VT ≥ 0 = VP

Dấu "=" xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\sqrt{1-x^2}=0\\\sqrt{1+x}=0\end{matrix}\right.\)

<=> x = -1 (TM)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

Ta có: VT ≥ 0 = VP

Dấu "=" xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x^2+4x+4}=0\end{matrix}\right.\)

<=> x = -2 (TM)

14 tháng 11 2018

c) \(\sqrt{1-x^2}+\sqrt{x+1}=0\)

ĐKXĐ: \(\left\{{}\begin{matrix}1-x^2\ge0\\x+1\ge0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}1\ge x^2\\x\ge-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le1\\x\ge-1\end{matrix}\right.\)

=> -1 \(\le\) x \(\le\) 1

\(\sqrt{1-x^2}+\sqrt{x+1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{x+1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(1+x\right)}.\left(\sqrt{1-x}+1\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{1+x}=0\\\sqrt{1-x}=-1\left(voli\right)\end{matrix}\right.\Rightarrow x+1=0\)

=> x = -1 ( thỏa mãn)

d) ĐKXĐ: \(x^2-4\ge0\Rightarrow x^2\ge4\)

\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\sqrt{x^2-4}+\sqrt{\left(x+2^2\right)}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2^2\right)}=0\)

\(\Leftrightarrow\)\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+2=0\\\sqrt{x-2}=-\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x-2=x+2\left(voli\right)\end{matrix}\right.\)

Vậy x= -2