\(\sin2x=\dfrac{-\sqrt{2}}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

\(\sin2x=\dfrac{-\sqrt{2}}{2}\Leftrightarrow\sin2x=-\dfrac{\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{4}+k2\pi\\2x=\pi-\left(-\dfrac{\pi}{4}\right)+k2\pi\end{matrix}\right.=\left[{}\begin{matrix}x=-\dfrac{\pi}{8}+k\pi\\x=\dfrac{5\pi}{8}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow2sin2x.cos2x+\sqrt{3}sin2x=0\)

\(\Leftrightarrow sin2x\left(2cos2x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\frac{5\pi}{6}+k2\pi\\2x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{5\pi}{12}+k\pi\\x=-\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

d.

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-\sqrt{2}< -1\left(l\right)\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k2\pi\\2x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{5}{\sqrt{3}}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}sin4x.cos4x+\frac{1}{8}=0\)

\(\Leftrightarrow\frac{1}{4}sin8x+\frac{1}{8}=0\)

\(\Leftrightarrow sin8x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{6}+k2\pi\\8x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=\frac{7\pi}{48}+\frac{k\pi}{4}\end{matrix}\right.\)

NV
17 tháng 9 2020

c.

\(\Leftrightarrow tanx=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow x=-\frac{\pi}{6}+k\pi\)

d.

\(\Leftrightarrow\frac{1}{2}sin2x.cos2x=0\)

\(\Leftrightarrow\frac{1}{4}sin4x=0\)

\(\Leftrightarrow sin4x=0\)

\(\Leftrightarrow x=\frac{k\pi}{4}\)

e.

\(\Leftrightarrow4sin4x.cos4x=-\sqrt{2}\)

\(\Leftrightarrow2sin8x=-\sqrt{2}\)

\(\Leftrightarrow sin8x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{4}+k2\pi\\8x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{32}+\frac{k\pi}{4}\\x=\frac{5\pi}{32}+\frac{k\pi}{4}\end{matrix}\right.\)

NV
17 tháng 9 2020

a.

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=\frac{1}{2}\\sin\frac{x}{2}=-2< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k2\pi\\\frac{x}{2}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k4\pi\\x=-\frac{2\pi}{3}+k4\pi\end{matrix}\right.\)

14 tháng 8 2017

a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)

pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0

<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0

<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0

<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)

tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ

b)pt<=>2sin2x+2sin2x=1

<=>2sin2x+2sin2x=sin2x+cos2x

<=>4sinx.cosx+sin2x-cos2x=0

Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:

pt trở thành:

4tanx+tan2x-1=0

<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)

Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)

c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi

pt<=>cos2x+\(\sqrt{3}\)sin2x=1

<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0

<=>(\(\sqrt{3}\)-1)sin2x=0

<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)

d)

pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)

Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi

pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)

Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận

14 tháng 8 2017

Câu d) mình nhầm nhé

<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry

9 tháng 6 2017

2sinx cosx = căn 52 cos x/2

<=>4sinx/2 cos x/2 cosx= căn 52 cos x/2

<=> cos x/2 =0 hoặc 4sinx/2cosx =căn 52

th1 cos x/2 =0 ( tự giải nha bạn)

th2 4sin x/2 cosx =căn 52

ta có sin x/2 =< 1 cos x=<1

suy ra 4sin x/2 cos x =< 4

suy ra 4 sin x/2 cos x = căn 52 ( vô lí )

9 tháng 6 2017

cho mk hỏi từ dong thứ 2 xuông đến dòng 3 là thế nào đấy bạn

1: ĐKXĐ: \(\cos^2x>=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos x>=1\\\cos x< =-1\end{matrix}\right.\Leftrightarrow x\in\left\{k2\Pi;\Pi+k2\Pi\right\}\)

2: ĐKXĐ: \(1-\sin2x>0\)

\(\Leftrightarrow\sin2x< 1\)

\(\Leftrightarrow2x< \dfrac{\Pi}{2}+k\Pi\)

hay \(x< \dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\cdot\cos2x+\dfrac{1}{2}\cdot\sin2x+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)

\(\Leftrightarrow2\cdot\dfrac{\sin\left(2x+\dfrac{\Pi}{3}+2x+\dfrac{\Pi}{6}\right)}{2}\cdot\dfrac{\cos\left(2x+\dfrac{\Pi}{3}-2x-\dfrac{\Pi}{6}\right)}{2}=\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)\cdot\cos\left(\dfrac{\Pi}{6}\right)=2\sqrt{2}\)

\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)=\dfrac{4\sqrt{6}}{3}\)

hay \(x\in\varnothing\)