\(\sqrt{\dfrac{\pi^2}{9}^{ }-x^2}\)=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

\(cos4x\cdot\sqrt{\dfrac{\pi^2}{9}-x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\\sqrt{\dfrac{\pi^2}{9}-x^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\\\dfrac{\pi^2}{9}-x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\left(k\in Z\right)\\x=\pm\dfrac{\pi}{3}\end{matrix}\right.\)

 

NV
22 tháng 10 2020

1.

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\)\(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)

2.

\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)

\(\Leftrightarrow2cos^22x-cos2x=cos2x\)

\(\Leftrightarrow cos^22x-cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

NV
22 tháng 10 2020

3.

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

4.

\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)

\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)

\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)

\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)

\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)

NV
22 tháng 10 2020

1.

\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)

2.

\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)

\(\Leftrightarrow2sin4x=\sqrt{6}\)

\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)

Pt vô nghiệm