Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
\(\left(3x-5\right)\left(x+8\right)+8x\left(3x-5\right)=0\)
=>(3x-5)(9x+8)=0
=>x=5/3 hoặc x=-9/8
\(x_1-x_2=\dfrac{5}{3}+\dfrac{9}{8}=\dfrac{40}{24}+\dfrac{27}{24}=\dfrac{67}{24}\)
Phan 1 theo delta
Phần 2 thì |...|=\(\sqrt{\left(x1+x2\right)^2-4.x1x2}\)
Áp dụng Vi-et thay vào mà tính nhé
\(x^2-\left(2m+3\right)+m-3=0\)
a/ ( a = 1; b = -(2m+3); c = m - 3 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(2m+3\right)\right]^2-4.1.\left(m-3\right)\)
\(=4m^2+12m+9-4m+12\)
\(=4m^2+8m+21\)
\(=\left(2m\right)^2+8m+2^2-2^2+21\)
\(=\left(2m+2\right)^2+17>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m+3\\P=x_1x_2=\frac{c}{a}=m-3\end{cases}}\)
Đặt \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\left(2m+3\right)^2-4\left(m-3\right)=4m^2+12m+9-4m+12\)
\(\Leftrightarrow A^2=4m^2+8m+21=\left(2m\right)^2+8m+2^2-2^2+21\)
\(\Leftrightarrow A^2=\left(2m+2\right)^2+17\ge17\)
\(MinA^2=17\Rightarrow MinA=\sqrt{17}\Leftrightarrow\left(2m+2\right)^2=0\Leftrightarrow m=-1\)
Vậy m = -1 là giá trị cần tìm
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
\(5^{x-1}+5.0,2^{x-2}=26\)
\(\Leftrightarrow5^{x-1}+\frac{5}{5^{x-2}}=26\)
\(\Leftrightarrow5^{x-1}+\frac{25}{5^{x-1}}=26\)
Đặt \(5^{x-1}=a\)
\(\Rightarrow a+\frac{25}{a}=26\)
\(\Leftrightarrow a^2-26a+25=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5^{x-1}=1\\5^{x-1}=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)