Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình
Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.
Do đó ta phải xét các phương án
- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.
- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.
- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.
Đáp án: C
\(\overline{ab}-\overline{ba}=36\Rightarrow9a-9b=36\Rightarrow a-b=4.\)
\(\overline{ab}=\left\{95;84;73;62;51;40\right\}\)
Gợi ý: số có 2 chữ số ,a-b=36
A:số đảo ngược
B:số chính(số chưa lộn ngược
Gọi số cần tìm có dạng: \(\overline{ab}\) \(\left(a,b\in N;a,b>0\right)\)
Thương của số cần tìm với tích hai chữ số của nó có dạng:\(\overline{ab}:\left(ab\right)\).
Theo giả thiết ta có: \(\overline{ab}=2ab+18\).
Tổng bình phương các chữ số của số cần tìm là: \(a^2+b^2+9=\overline{ab}\).
Ta có hệ phương trình: \(\left\{{}\begin{matrix}2ab+18=\overline{ab}\\a^2+b^2+9=\overline{ab}\end{matrix}\right.\)\(\Rightarrow a^2+b^2+9=2ab+18\)\(\Leftrightarrow\left(a-b\right)^2=9\)\(\Leftrightarrow\left|a-b\right|=3\).
Th 1. \(a-b=3\)\(\Leftrightarrow a=b+3\). Khi đó:
\(2ab+18=\overline{ab}\)\(\Leftrightarrow2ab+18=10a+b\)\(\Leftrightarrow2\left(b+3\right)b+18=10\left(b+3\right)+b\)\(\Leftrightarrow2b^2-5b-12=0\)\(\Leftrightarrow\left\{{}\begin{matrix}b=4\left(tm\right)\\b=\dfrac{-3}{2}\left(l\right)\end{matrix}\right.\).
Với \(b=4\) ta có \(a=3+b=3+4=7\). Vậy số đó là 73.
Th2: \(a-b=-3\)\(\Leftrightarrow a=b-3\). Khi đó:
\(2ab+18=10a+b\)\(\Leftrightarrow2\left(b-3\right)b+18=10\left(b-3\right)+b\)
\(\Leftrightarrow2b^2-17b+48=0\) (Vô nghiệm).
Vậy số cần tìm là: 73.
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
Gọi \(S=\left\{\overline{abc}\right\}\)
a có 5 cách chọn
b có 5 cách chọn
c có 4 cách chọn
=>S có 5*5*4=100 số
Gọi \(\overline{abc}\) là số chia hết cho 5
TH1: c=5
=>a có 4 cách và b có 4 cách
=>Có 16 cách
TH2: c=0
=>a có 5 cách và b có 4 cách
=>Có 5+4=20 cách
=>Có 16+20=36(cách)
\(n\left(\Omega\right)=C^2_{100}\)
\(n\left(B\right)=C^2_{36}\)
=>\(P\left(B\right)=\dfrac{7}{55}\)