Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
Bài 1 :
\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)
\(b)\)\(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)
Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(0\le n\le5\)
\(b)\)\(n\ge2\)
\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)
\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)
Chúc bạn học tốt ~
a)\(^{X^{3N+1-7}}\)
b)\(X^{n-6^{ }}y^{n+3-10}\)
c)\(X^{^{ }5-n}\)
d)\(X^{2N-5}\)
E)\(\frac{3}{2}X^{5-N}Y^{N-3}\)
K NHA
b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất
=> 1/x-5=-1
=>x-5=-1
=>x=4
Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp