Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Gọi tổng số sản phẩm theo dự định là x ( SP) x > 0
Số ngày hoàn thành sản phẩm theo dự định là: \(\dfrac{x}{50}\) ngày
Tổng số sản phẩm heo thự tế là: x + 13 (SP)
Số ngày hòan thành sản phẩm theo thực tế là: \(\dfrac{x+13}{57}\) ngày
Theo đề ra ta có pt:
\(\dfrac{x}{50}-\dfrac{x+13}{57}=1\)
\(\Leftrightarrow57x-50x-650=2850\)
\(\Leftrightarrow7x-650=2850\)
\(\Leftrightarrow7x=3500\)
\(\Leftrightarrow x=500\) (nhận)
Vậy tổng số sản phẩm theo dự định là 500 (SP)
e)\(\dfrac{x-5}{75}+\dfrac{x-2}{78}+\dfrac{x-6}{74}+\dfrac{x-68}{12}=4\)
\(\Leftrightarrow\dfrac{x-5}{75}-1+\dfrac{x-2}{78}-1+\dfrac{x-6}{74}-1+\dfrac{x-68}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-80}{75}+\dfrac{x-80}{78}+\dfrac{x-80}{74}+\dfrac{x-80}{12}=0\)
\(\Leftrightarrow\left(x-80\right)\left(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\right)=0\)
\(\Leftrightarrow x=80\)(vì \(\dfrac{1}{75}+\dfrac{1}{78}+\dfrac{1}{74}+\dfrac{1}{12}\ne0\))
f)\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)(\(ĐKXĐ:x\ne-1;-3;-5;-7\))
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{6}{x^2+8x+7}=\dfrac{2}{9}\)
\(\Leftrightarrow2x^2+16x+14=54\)
\(\Leftrightarrow2x^2+16x-40=0\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+4\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=6\\x+4=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
1) A=4*\(\frac{10^{2n}-1}{9}\) B=\(2\cdot\frac{10^{n+1}-1}{9}\) C=\(8\cdot\frac{10^n-1}{9}\)
đặt 10^n=X => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9
=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)
2) = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)
mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6
do đó 4mn(m^2-n^2) chia hết 6*4=24
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)
Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)
Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)
Đáp án là 13121543 nha