\(\sqrt{-m^2x^2+2\left|m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

11 tháng 10 2019

Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi  \(x^2-\left(2m-1\right)x+m^2\ne0\)\(\forall x\inℝ\)

Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm

<=> \(\Delta< 0\)

<=> \(\left(2m-1\right)^2-4m^2< 0\)

<=> \(-4m+1< 0\)

<=> m > 1/4.

NV
16 tháng 9 2020

\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)

\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)

\(\Rightarrow D_2=\left(-2;+\infty\right)\)

\(\Rightarrow A=\left\{-1;1;2;3\right\}\)

NV
29 tháng 5 2020

\(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}-1\le0\)

\(\Leftrightarrow\frac{x^2+2mx+3m+4}{mx^2+2\left(m+1\right)x+m}\le0\)

Để tập nghiệm của BPT đã cho là R

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2mx+3m+4\ge0\\mx^2+2\left(m+1\right)x+m< 0\end{matrix}\right.\) \(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=m^2-3m-4\le0\\m< 0\\\Delta'_2=\left(m+1\right)^2-m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le m\le4\\m< 0\\2m+1< 0\end{matrix}\right.\) \(\Rightarrow-1\le m< -\frac{1}{2}\)

4 tháng 4 2022

Vậy chỉ có một phần tử thôi hả thầy