K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

1. Phân tích đa thức thành nhân tử:

a)\(4x^2-6x=2x\left(2x-3\right)\)

b)\(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

c)\(-3x-6xy+5x=2x-6xy=2x\left(1-3y\right)\)

2. Phân tích đa thức thành nhân tử:

a)\(2x^2y-4xy^2+6xy=2xy\left(x-2y+3\right)\)

b)\(4x^3y^2-8x^2y^3+2x^4y=2x^2y\left(2xy-4y^2+x^2\right)\)c)\(7x^2y^2-21xy^2z+7xyz-14xy=7xy\left(xy-3yz+z-2\right)\)

4 tháng 11 2019

Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử

4 tháng 11 2019

ok bạn cảm ơn nha

5 tháng 7 2017

Bài 1.

a. -3xy2 . (4x2 - xy + 2y2)= -12x3y2 + 3x2y3 - 6xy4

b. 3xn-2yn-1 . (xn+2 - 2xn+1yn + yn+1) = 3x2nyn-1 - 6x2n-1y2n-1 + 3xn-2y2n

Bài 2.

a. 2x(x+3)-3x2(x+2)+x(3x2+4x-6)

= 2x2+6x-3x3-6x2+3x3+4x2-6x

= 0

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

b. 3x(2x2-x)-2x2(3x+1)+5(x2-1)

= 6x3-3x2-6x3-2x2+5x2-5

= -5

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

c. 4(x-6)-x2(3x+2)+x(5x-4)+3x2(x-1)

= 4x-24-3x3-2x2+5x2-4x+3x3-3x2

= -24.

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

d. xy(3x2-6xy)-3(x3y-2x2y2-1)

= 3x3y-6x2y2-3x3y+6x2y2+3

= 3.

Vậy giá trị của biểu thức trên không phụ thuộc vào các biến x,y.

7 tháng 8 2020

\(A=x\left(2x+3\right)-4\left(x+1\right)-2x\left(x-\frac{1}{2}\right)\)

\(=2x^2+3x-4x-4-2x^2+x\)

\(=\left(2x^2-2x^2\right)+\left(3x+x-4x\right)-4\)

\(=-4\)

\(\left(2x^3-3xy+12x\right)\left(-\frac{1}{6}xy\right)\)

\(=-\frac{2}{6}x^3.xy+\frac{3}{6}xy.xy-\frac{12}{6}x.xy\)

\(=-\frac{1}{3}x^4y+\frac{1}{2}x^2y^2-2x^2y\)

BÀi 1

Ta có A = x( 2x + 3 ) - 4( x + 1 ) - 2x( x - 1/2 ) = ( 2x.x + 3.x ) - ( 4.x + 4.1 ) - ( 2x.x - 1/2.2x )

= 2x2 + 3x - 4x - 4 - 2x2 + x

= - 4.

Chọn đáp án C

Bài 2

Ta có: ( 2x3 - 3xy + 12x )( - 1/6xy ) = ( - 1/6xy ).2x3 - 3xy( - 1/6xy ) + 12x( - 1/6xy )

= - 1/3x4y + 1/2x2y2 - 2x2y

Chọn đáp án D

Hok tốt

15 tháng 10 2017

Bài 1 :

a) 3x2 . ( 5x2 - 7x + 4 ) = 15x4 - 21x3 + 12x2

b) xy2 . ( 2x2y - 5xy + y ) = 2x3y3 - 5x2y3 + xy3

c) ( 2x2 - 5x ) . ( 3x2 - 2x + 1 ) = 6x4 - 4x3 + 2x2 - 15x3 + 10x2 - 5x

= 6x4 - 19x3 + 12x2 - 5x

d) ( x - 3y ) . ( 2xy + y2 + x ) = 2x2y + xy2 + x2 - 6xy2 - 3y3 - 3xy

Bài 2 :

a) A = x2 + 9y2 - 6xy

=> A = x2 - 2 . x . 3y + ( 3y )2

=> A = ( x - 3y )2

Thay x = 19 và y = 13 vào biểu thức A ta có :

A = ( 19 - 3 . 13 )2

=> A = ( 19 - 39 )2

=> A = ( -20 )2

=> A = 400

b) B = x3 - 6x2y + 12xy2 - 8y3

=> B = ( x - 2y )3

Thay x = 12 và y = -4 vào biểu thức B ta có :

B = [ 12 - 2 . ( -4 ) ]3

=> B = ( 12 + 8 )3

=> B = 203

=> B = 8000

= -3y3 + 2x2y - 5xy2 + x2 - 3xy

2 tháng 11 2017

a)15x^4-21x^3+12x^2

b)2x^3y^3-5x^2y^3+xy^3

c)6x^4-4x^3+2x^2-15x^3+10x^2-5x=6x^4-19x^3+12x^2-5x

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

19 tháng 7 2017

đăng nhiều thế, từng câu 1 thôi bạn

19 tháng 7 2017

câu 20

\(\)\(C_{20}=\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left[\left(a^2+1\right)-2a\right]\left[\left(a^2+1\right)+2a\right]\)\(C_{20}=\left[a^2-2a+1\right]\left[a^2+2a+1\right]=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

\(C_{20}=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)

21 tháng 10 2017

a, ( x-y)2=4

21 tháng 10 2017

3x^2 +3y^2 -6xy -12

=3(x^2 - 2xy +y^2 - 2^2  )

=3 (x-y)^2 - 2^2 

=3(x-y-2)(x-y+2)

3(x+y) -(x^2+2xy+y^2)

=3(x+y) -(x+y)^2 

(x+y)(3-x-y)

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)