Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(\sqrt{2}C=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\Rightarrow C=0\)
b)
\(B=3\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\)
\(\Rightarrow\sqrt{2}B=3\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\)
\(=3\left(\sqrt{5}+1+\sqrt{5}-1\right)-\sqrt{5}\left(\sqrt{5}+1-\sqrt{5}+1\right)\)
\(\sqrt{2}B=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\Rightarrow B=2\sqrt{10}\)
C)√3+√5−√3−√5−√2b) (3−√5)√3+√5+(3+√5)√3−√5d) √4−√7−√4+√7+√7e) √6,5+√12+√6,5−√12+2√6mình cần giải gấp ạ
\(1a.2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{548}=2\sqrt{16.5\sqrt{3}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=8\sqrt{\sqrt{75}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=6\sqrt{\sqrt{75}}-6\sqrt{137}\) \(b.\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right).\dfrac{1}{\sqrt{15}}=10\sqrt{3}.\dfrac{1}{\sqrt{3}.\sqrt{5}}=2\sqrt{5}\) \(d.\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}=\left(60\sqrt{2}-80\sqrt{2}+105\sqrt{2}\right).\dfrac{1}{\sqrt{10}}=85\sqrt{2}.\dfrac{1}{\sqrt{2}.\sqrt{5}}=17\sqrt{5}\) \(e.\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right):\sqrt{7}=\left(\sqrt{\dfrac{1}{7}}-4\sqrt{\dfrac{1}{7}}+3\sqrt{\dfrac{1}{7}}\right).\dfrac{1}{\sqrt{7}}=0\) \(2a.A=\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}=\sqrt{9-5-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\) \(b.B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{4-2}=2\)
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)
\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)
\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)
\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
a)
=\(\sqrt{18-2.3\sqrt{2}.1+1}\)
\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)
\(=3\sqrt{2}-1\)
b)
=\(\sqrt{12+2.2\sqrt{3}.3+9}\)
=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)
=\(2\sqrt{3}+3\)
c)
=\(\sqrt{25-2.5.4\sqrt{2}+32}\)
=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)
=\(4\sqrt{2}-5\)
d)
\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)
e)
\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)
g)
\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
a) ( \(\sqrt{12}\) + \(\sqrt{3}\) ) (\(\sqrt{27}\) - \(\sqrt{3}\) )
= (\(\sqrt{3}.\sqrt{4}\) + \(\sqrt{3}\) ) ( \(\sqrt{3}.\sqrt{9}\) - \(\sqrt{3}\) )
= \(\sqrt{3}\left(\sqrt{4}+1\right)\). \(\sqrt{3}\left(\sqrt{9}-1\right)\)
= \(\sqrt{3}.3.\sqrt{3}.2\)
= 3. 6 = 18
b) \(\left(5\sqrt{3}-2\sqrt{7}\right)\)\(\left(5\sqrt{3}+2\sqrt{7}\right)\)
=\(\left(5\sqrt{3}\right)^2\) \(-\left(2\sqrt{7}\right)^2\)
= 75 - 28 = 47
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}=6\sqrt{3}-12\sqrt{3}+20\sqrt{3}=14\sqrt{3}\)
câu tiếp tương tự câu thứ 2 nha
\(D^2=24-2\sqrt{144-9.7}=24-2\sqrt{144-63}=24-2\sqrt{81}=6\)
mà:D<0\(\Rightarrow D=-\sqrt{6}\)