K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

A) xét tam giác ABI và Tam giác ADI táco

AB=AD(gt)

AI chung

BAI=IAD (do AI là tia p/g)

Tam giác ABI= tam giác ADI

=>BI=ID

9 tháng 10 2021

b) Tcos ABI+IBE=180\(^0\)

   ADI+IDC=180\(^0\)

Mak ABI=ADI(tam giác ABI=tam giác ADI)

\(\Rightarrow IBE=IDC\)

Xét tam giác IBE và tam giác IDC táco

IBE=IDC(cmt)

BI=ID(Cmt)

BIE=DIC (đối đỉnh)

=>tam giác IBE= tam giác IDC

DD
13 tháng 8 2021

a) \(\frac{1985.1987-1}{1980+1985.1986}=\frac{1985.1986+1985-1}{1980+1985.1986}=\frac{1985.1986+1984}{1985.1986+1980}>\frac{1985.1986+1980}{1985.1986+1980}=1\)

b) \(A=\frac{13^{15}+1}{13^{16}+1}=\frac{13^{15}+\frac{1}{13}+\frac{12}{13}}{13^{16}+1}=\frac{\frac{1}{13}\left(13^{16}+1\right)+\frac{12}{13}}{13^{16}+1}=\frac{1}{13}+\frac{12}{13\left(13^{16}+1\right)}\)

\(B=\frac{13^{16}+1}{13^{17}+1}=\frac{13^{16}+\frac{1}{13}+\frac{12}{13}}{13^{17}+1}=\frac{\frac{1}{13}\left(13^{17}+1\right)+\frac{12}{13}}{13^{17}+1}=\frac{1}{13}+\frac{12}{13\left(13^{17}+1\right)}\)

Có \(13^{16}+1< 13^{17}+1\)nên \(\frac{12}{13\left(13^{16}+1\right)}>\frac{12}{13\left(13^{17}+1\right)}\)

Vậy \(A>B\).

20 tháng 8 2021

1, xét tam giác BDA và tam giác BEC có : ^ABC chung

^BEC = ^BDA = 90

=> tam giác BDA đồng dạng với tam giác BEC (g-g)

=> ^BAD = ^BCE

2, xét tam giác HEA và tam giác BDA có : ^BAD chung

^HEA = ^BDA = 90

=> tam giác HEA đồng dạng với tg BDA  (g-g)

=> ^AHE = ^ABD 

3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60

có ^BAC + ^BAD = 90 => ^BAD = 30 

mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC

XONG tính ra ^C 

20 tháng 8 2021

bạn ơi tính C kiểu gì ?

8 tháng 8 2021

\(1.\)  \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)

       \(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)

       \(=14\)

vậy P=14

\(2.\)   \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)

           \(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)

          \(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)

         \(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)

         \(\Rightarrow|x+2|=4\)

         \(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)

          \(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

vậy  \(x\in\left\{2;-6\right\}\)

NM
8 tháng 8 2021

bài 1

ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)

2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)

\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)

\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)

NM
8 tháng 8 2021

a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)

\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)

2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)

Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)

3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)

4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)

Vậy \(x=3,y=-3,z=2\)