\(\frac{1}{2}\)/+(y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)

=> Có hai trường hợp

TH1: \(\frac{1}{4}+x=\frac{5}{6}\)                                                 TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)

<=> \(x=\frac{5}{6}-\frac{1}{4}\)                                                <=> \(x=-\frac{5}{6}-\frac{1}{4}\)

<=> \(x=\frac{10}{12}-\frac{3}{12}\)                                            <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)

<=> \(x=\frac{7}{12}\)                                                        <=> \(x=-1\frac{1}{12}\)

Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)

b) \(A\left(x\right)=5x^2-3x-16\)

Thay \(x=-2\) vào đa thức A(x), ta có:

\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=20+6-16\)

\(A\left(-2\right)=10\)

Vậy giá trị của đa thức A(x) tại x =-2 là 10

c) \(A=4x^2y^2\left(-2x^3y^2\right)\)

\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)

\(A=\left(-8\right)x^5y^4\)

Đơn thức A có:

- Hệ số là: -8

- Phần biến là: \(x^5y^4\)

- Bậc là: 9

21 tháng 4 2017

a)

1/4+x=5/6 hoặc -5/6

1/4+x=5/6 suy ra x=7/12

1/4+x=-5/6 suy ra x=-13/12

b) thay x=-2 vào

suy ra A=5.(-2)2-3.(-2)-16

=10

c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9

Bài dễ sao ko động não tí đi

20 tháng 9 2019

a. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!