Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}\right]:\dfrac{2\sqrt{3x}}{x-1}\)
\(=\left(\dfrac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right).\dfrac{x-1}{2\sqrt{3x}}\)
\(=\dfrac{2x}{x-1}.\dfrac{x-1}{2\sqrt{3x}}=\dfrac{\sqrt{x}}{\sqrt{3}}=\dfrac{\sqrt{3x}}{3}\)
\(\frac{\left(5\sqrt{7}+7\sqrt{5}\right)}{\sqrt{35}}\)
= \(\frac{\sqrt{5}.\left(\sqrt{35}+7\right)}{\sqrt{35}}\)
= \(\frac{\sqrt{35}+7}{\sqrt{7}}\)
= \(\sqrt{5}+\sqrt{7}\)
\(\frac{5\sqrt{7}+7\sqrt{5}}{\sqrt{35}}=\frac{\sqrt{5}.\sqrt{5}.\sqrt{7}+\sqrt{7}.\sqrt{7}.\sqrt{5}}{\sqrt{35}}.\)
\(=\frac{\sqrt{5}.\sqrt{35}+\sqrt{7}.\sqrt{35}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}\left(\sqrt{5}+\sqrt{7}\right)}{\sqrt{35}}=\sqrt{5}+\sqrt{7}\)
1) Với x=4 thì
\(A=\dfrac{2\sqrt{4}}{\sqrt{4}+3}=\dfrac{4}{2+3}=\dfrac{4}{5}\)
2) \(P=A+B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
3) Để P< 3 thì
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 3\)
\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\dfrac{9}{\sqrt{x}-3}< 0\)
\(\Rightarrow\sqrt{x}-3< 0\) ( vì 9>0)
<=> x<9
Vậy giá trị nguyên lớn nhất của x để P <3 là 8
Bài 7 :
a, Với \(x\ge0;x\ne1\)
\(P=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
\(=\left(\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{x\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)
\(=\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)
\(=\left(\frac{x-2\sqrt{x}+1}{x\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}=\frac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=x+\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
mà 2 dương
=> \(\frac{2}{x+\sqrt{x}+1}>0\)( đpcm )