Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{5}{x}+1\right)+\left(\dfrac{4}{x+1}+1\right)=\left(\dfrac{3}{x+2}+1\right)+\left(\dfrac{2}{x+3}+1\right)\)
=>x+5=0
hay x=-5
a. 3x-1=x-5 <=> 2x=-4 <=> x=-2
Vậy tập no của phương trình là S={-2}
b.\(\dfrac{2x-1}{3}\)+\(\dfrac{3x-5}{4}\)=\(\dfrac{x-1}{5}\)
<=>40x-20+45x-75=12x-12
<=>73x=83 <=> x= \(\dfrac{83}{73}\)
Vậy tập no của phương trình là S={\(\dfrac{83}{73}\)}
c.(2x-6)(x+20)=0
<=> 2x-6=0 hoặc x+20=0
1) 2x-6=0 <=> x= 3
2) x+20=0 <=> x=-20
Vậy tập no của phương trình là S={-20 ; 3}
d. \(\dfrac{x-3}{x+3}\)+\(\dfrac{x+3}{x-3}\)=\(\dfrac{2x\left(x+1\right)}{x^2-9}\)
ĐKXĐ: x ≠ 3 và x ≠ -3
Ta có \(\dfrac{x-3}{x+3}\)+\(\dfrac{x+3}{x-3}\)=\(\dfrac{2x\left(x+1\right)}{x^2-9}\)
<=> (x-3)2 + (x+3)2 = 2x2+2x
<=> x2 -6x +9 +x2 +6x +9=2x2+2x
<=> 2x=18 <=> x=9
Vậy tập no của phương trình là S={9}
bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{\left(x-2\right)^2}{-\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)^2}.\dfrac{-\left(x-2\right)}{\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-1\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\dfrac{2}{x+2}:\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\dfrac{1}{2}\)
\(A=\left(\dfrac{x}{x+2}+\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{4-x^2}\right):\dfrac{4}{x+2}=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{-\left(x-2\right)\left(2+x\right)}\right).\dfrac{x+2}{4}=\left(\dfrac{x\left(x+2\right)}{\left(x+2\right)^2}-\dfrac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\left(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\dfrac{-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)
Pt trên có MSC là \(\left(x-1\right)\left(x^2+x+1\right)\)
Quy đồng mẫu số :
\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)
( ĐKXĐ \(x\ne1\))
\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{x^3-1}-\dfrac{3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+x+1+7x-10-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\) \(\dfrac{x^2+5x-6}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\left(KTMĐK\right)\\x=-6\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-6\right\}\)
ĐKXĐ: \(x\ne1\); \(x\ne-1\)
\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow x^2+x+1+7x-10-3x+3=0\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow x-1=0\) ; \(x+6=0\)
+) \(x-1=0\)
\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)
+) \(x+6=0\)
\(\Leftrightarrow x=-6\) (Thỏa mãn ĐKXĐ)
Tập nghiệm: \(S=\left\{-6\right\}\)
a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)
=>-12x-4=2x-10
=>-14x=-6
hay x=3/7
b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
hay x=3/5(loại)
c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)
\(\Leftrightarrow x^2+3x-1=x^2-x+1\)
=>4x=2
hay x=1/2(nhận)
a) \(x^2\) - x( x - 3) > 2x + 5
<=> \(x^2\) - \(x^2\) + 3x > 2x +5
<=> x > 5
Vậy bất phương trình có nghiệm x > 5.
Biểu diễn:
0 5
b) \(\dfrac{x\left(2x-1\right)}{12}\) - \(\dfrac{x}{8}\)< \(\dfrac{x^2-1}{6}\) - \(\dfrac{x+4}{24}\)
<=> \(\dfrac{4x^2-2x-3x}{24}\)<\(\dfrac{4x^2-4-x-4}{24}\)
<=> \(4x^2\) - 2x - 3x < \(4x^2\) - 4 - x -4
<=> -4x< -8
<=> x>2
Vậy bất phương trình có nghiệm x>2.
Biểu diễn:
0 2
\(\dfrac{x}{30}+\dfrac{x}{40}=\dfrac{3}{4}\)\(\Leftrightarrow x\left(\dfrac{1}{40}+\dfrac{1}{30}\right)=\dfrac{3}{4}\)\(\Leftrightarrow x.\dfrac{7}{120}=\dfrac{3}{4}\)\(\Leftrightarrow x=\dfrac{90}{7}\)
Vậy tập nghiệm của pt là S=\(\left\{x=\dfrac{90}{7}\right\}\)
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{3}{4}\\ \dfrac{30x}{120}+\dfrac{40x}{120}=\dfrac{90}{120}\\ \dfrac{70x}{120}=\dfrac{90}{120}\\ \Rightarrow70x=90\\ \Rightarrow x=\dfrac{90}{70}\\ x=\dfrac{9}{7}\)