Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}\right)^2+2\sqrt{2x-3}\cdot1+1^2}+\sqrt{\left(\sqrt{2x-3}\right)+2\sqrt{2x-3}\cdot4+4^2}=5\)
\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)
\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3
<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3
<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3
<=> x - 1 + x - 2 = 3
<=> 2x - 3 = 3
<=> x = \(\dfrac{6}{2}\)= 3
b ,
\(\sqrt{x^2-10x+25}=3-19x\)
<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)
<=> \(\left|x-5\right|=3-19x\)
<=> \(x-5=3-19x\)
\(\Leftrightarrow x+19x=3+5\)
\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)
\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(|\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
roi xet cac truong hop cua gia tri tuyet doi roi giai
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)
\(\Leftrightarrow2\sqrt{2x-3}=0\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\)
đề sai ko vậy bạn
nếu đề đúng thì mình nghỉ là
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+3+8\sqrt{2x-13}}=5\)
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+3+8\sqrt{2x-13}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-13+8\sqrt{2x-13}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-13}+4\right)^2}=5\)
\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-13}+4=5\)
\(\Leftrightarrow\sqrt{2x-3}+\sqrt{2x-13}=0\left(vl\right)\)
suy ra pt vô nghiệm
theo tôi là vậy
\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}}\) ; \(\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Mà \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\Rightarrow\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)
ĐKXĐ: \(x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|=4\)
Mà \(\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|=4\)
Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{2x-5}\ge0\Rightarrow2x-5\le1\Rightarrow x\le3\)
Vậy nghiệm của pt là \(\frac{5}{2}\le x\le3\)
ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2.4.\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)
\(\Leftrightarrow2\sqrt{2x-3}=0\)
\(\Leftrightarrow2x-3=0\Rightarrow x=\dfrac{3}{2}\)