K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2019

Đề như vậy hả bạn: \(\frac{3cosx+4sinx+6}{3cosx+4sinx+1}=2\)

30 tháng 9 2019

Ko bạn ơi đề là 3cosx +4sinx + 6 / (3cosx +4sinx +1) = 2

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
9 tháng 10 2020

4.

\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
9 tháng 10 2020

2.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)

3.

\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)

\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
25 tháng 7 2020

c/

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{5}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

d/

\(\Leftrightarrow2cos^2\frac{x}{2}-1+3cos\frac{x}{2}+2=0\)

\(\Leftrightarrow2cos^2\frac{x}{2}+3cos\frac{x}{2}+1=0\)

\(\Rightarrow\left[{}\begin{matrix}cos\frac{x}{2}=-1\\cos\frac{x}{2}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}=\pi+k2\pi\\\frac{x}{2}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\pi+k4\pi\\x=\pm\frac{4\pi}{3}+k4\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{3}\end{matrix}\right.\) (đặt \(cosx=t\) thành pt bậc 2 rồi bấm máy ra nghiệm thôi)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm arccos\left(-\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow6\left(1-sin^2x\right)+5sinx-7=0\)

\(\Leftrightarrow-6sin^2x+5sinx-1=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ

4 tháng 6 2019

Các bước biến đổi. Bạn tự tìm kết quả nhé!

1) \(\left(\sin x-\cos x\right)\left(\cos^2x+\cos x.\sin x+\sin^2x\right)+\cos^2x-\sin^2x=0\)

<=> \(\left(\sin x-\cos x\right)\left(1+\cos x.\sin x\right)+\left(\cos x-\sin x\right)\left(\cos x+\sin x\right)=0\)

<=> \(\left(\sin x-\cos x\right)\left(\cos x+1\right)\left(\sin x+1\right)=0\)

2) \(\left(\sin^3x-2\sin^5x\right)-\left(2\cos^5x-\cos^3x\right)=0\)

<=> \(\sin^3x\left(1-2\sin^2x\right)-\cos^3x\left(2\cos^2x-1\right)=0\)

<=> \(\sin^3x.\cos2x-\cos^3x.\cos2x=0\)

<=> \(\cos2x\left(\sin^3x-\cos^3x\right)=0\)

3) ĐK: x\(\ne\frac{\pi}{2}+k\pi\)

\(\cos x\left(3.\tan x+2\right)-\left(3\tan x+2\right)=0\)

<=> \(\left(\cos x-1\right)\left(3.\tan x+2\right)=0\)

NV
22 tháng 10 2020

\(\Leftrightarrow sinx.cosx+2sinx+\left(1-cos^2x-3cosx-3\right)=0\)

\(\Leftrightarrow sinx\left(cosx+2\right)-\left(cosx+1\right)\left(cosx+2\right)=0\)

\(\Leftrightarrow\left(sinx-cosx-1\right)\left(cosx+2\right)=0\)

\(\Leftrightarrow sinx-cosx=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)