Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\in\left[1;\frac{5}{2}\right]\)
Ta thấy 2 vế luôn dương, bình phương lên đc:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk:\(\frac{5}{2}\le x\le1\)
2 vế dương bình lên ta có:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
GT ⇒\(x^2+6x+9=2x+3+1+2\sqrt{2x+3}\)
\(\Leftrightarrow\left(x+3\right)^2=\left(\sqrt{2x+3}+1^2\right)\)
\(\Rightarrow x+2=\sqrt{2x+3}\)
\(\Rightarrow x^2+1+2x=0\)
\(\Rightarrow x=-1\)
\(\Leftrightarrow2\left(x^2+1\right)-2x\sqrt{x^2+1}=5\)
\(\Leftrightarrow x^2+1-2x\sqrt{x^2+1}+x^2=4\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}-x=2\\\sqrt{x^2+1}-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+2\left(x\ge-2\right)\\\sqrt{x^2+1}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+4x+4\\x^2+1=x^2-4x+4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{4}\\x=\frac{3}{4}< 2\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{5x-1}+\sqrt{2x-3}=\sqrt{3x-2}\)
\(\Leftrightarrow7x-4+2\sqrt{\left(5x-1\right)\left(2x-3\right)}=3x-2\)
\(\Leftrightarrow\sqrt{10x^2-17x+3}=1-2x\)
Do \(x\ge\frac{3}{2}\Rightarrow1-2x< 0\)
Phương trình vô nghiệm
a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)
Đặt \(\sqrt[3]{x^2+5x-2}=a\)
\(a^3-2a+4=0\)
\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)
b/ ĐKXĐ:...
\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)
Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)
\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)
Đặt \(\sqrt{x^2+3x}=a\ge0\)
\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)
d/ ĐKXĐ: \(-1\le x\le2\)
\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)
\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)
\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)
Đặt \(\sqrt{2+x-x^2}=a\ge0\)
\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)
e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\)
Đk: \(x\ge-5\)
2 vế dương bình phương lên
\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)
\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)
\(\Leftrightarrow4x+20=x^2+4x+4\)
\(\Leftrightarrow16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)