Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(x\ge-5\)
2 vế dương bình phương lên
\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)
\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)
\(\Leftrightarrow4x+20=x^2+4x+4\)
\(\Leftrightarrow16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)
GT ⇒\(x^2+6x+9=2x+3+1+2\sqrt{2x+3}\)
\(\Leftrightarrow\left(x+3\right)^2=\left(\sqrt{2x+3}+1^2\right)\)
\(\Rightarrow x+2=\sqrt{2x+3}\)
\(\Rightarrow x^2+1+2x=0\)
\(\Rightarrow x=-1\)
đk x\(\ge-1\)
pt \(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=25\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=25\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=21-3x\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(21-3x\right)^2\)đk \(x\le7\)
\(\Leftrightarrow8x^2+20x+12=9x^2-126x+441\)
\(\Leftrightarrow x^2-146x+429=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=143\left(l\right)\\x=3\left(nh\right)\end{matrix}\right.\)
ĐK : \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge-1\)
Ta có :
\(\sqrt{x+1}+\sqrt{2x+3}=5\\ \Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=25\\ \Leftrightarrow x+1+2x+3+2\sqrt{\left(x+1\right)\left(2x+3\right)}=25\\ \Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=25-3x-4\\ \Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=21-3x\\ \Leftrightarrow4\left(x+1\right)\left(2x+3\right)=\left(21-3x\right)^2\\ \Leftrightarrow4\left(2x^2+5x+3\right)=441-126x+9x^2\\ \Leftrightarrow8x^2+20x+12=441-126x+9x^2\\ \Leftrightarrow441-126x+9x^2-8x^2-20x-12=0\\ \Leftrightarrow x^2-146x+429=0\\ \Leftrightarrow\left[{}\begin{matrix}x=143\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\)
Vậy phương trình đã cho có 2 nghiệm là x=143 và x=3
\(\Leftrightarrow2\left(x^2+1\right)-2x\sqrt{x^2+1}=5\)
\(\Leftrightarrow x^2+1-2x\sqrt{x^2+1}+x^2=4\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}-x=2\\\sqrt{x^2+1}-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+2\left(x\ge-2\right)\\\sqrt{x^2+1}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+4x+4\\x^2+1=x^2-4x+4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{4}\\x=\frac{3}{4}< 2\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{5x-1}+\sqrt{2x-3}=\sqrt{3x-2}\)
\(\Leftrightarrow7x-4+2\sqrt{\left(5x-1\right)\left(2x-3\right)}=3x-2\)
\(\Leftrightarrow\sqrt{10x^2-17x+3}=1-2x\)
Do \(x\ge\frac{3}{2}\Rightarrow1-2x< 0\)
Phương trình vô nghiệm
Đk:\(x\in\left[1;\frac{5}{2}\right]\)
Ta thấy 2 vế luôn dương, bình phương lên đc:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Đk:\(\frac{5}{2}\le x\le1\)
2 vế dương bình lên ta có:
\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow5-2x=x-1\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)