\(2\sqrt{2x+3}=x^2+4x+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

GT\(x^2+6x+9=2x+3+1+2\sqrt{2x+3}\)

\(\Leftrightarrow\left(x+3\right)^2=\left(\sqrt{2x+3}+1^2\right)\)

\(\Rightarrow x+2=\sqrt{2x+3}\)

\(\Rightarrow x^2+1+2x=0\)

\(\Rightarrow x=-1\)

21 tháng 8 2016

Đk:\(x\in\left[1;\frac{5}{2}\right]\)

Ta thấy 2 vế luôn dương, bình phương lên đc:

\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)

\(\Leftrightarrow5-2x=x-1\)

\(\Leftrightarrow3x=6\)

\(\Leftrightarrow x=2\)

 

21 tháng 8 2016

Đk:\(\frac{5}{2}\le x\le1\)

2 vế dương bình lên ta có:

\(\sqrt{\left(5-2x\right)^2}=\sqrt{\left(x-1\right)^2}\)

\(\Leftrightarrow5-2x=x-1\)

\(\Leftrightarrow3x=6\)

\(\Leftrightarrow x=2\)

 

 

 

18 tháng 3 2019
https://i.imgur.com/B9pl8gm.jpg
21 tháng 8 2016

Đk: \(x\ge-5\)

2 vế dương bình phương lên

\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)

\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)

\(\Leftrightarrow4x+20=x^2+4x+4\)

\(\Leftrightarrow16-x^2=0\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)

 

30 tháng 11 2016

ptvn

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

NV
22 tháng 10 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x^2-2x-3}=a\ge0\Rightarrow x^2-2x=a^2+3\)

\(a^2+3+3a=7\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2-2x-3=1\Rightarrow x^2-2x-4=0\Rightarrow x=...\)

b/ \(\Leftrightarrow x^2-4x+6-\sqrt{x^2-4x+12}=0\)

\(\Leftrightarrow x^2-4x+12-\sqrt{x^2-4x+12}-6=0\)


Đặt \(\sqrt{x^2-4x+12}=a>0\)

\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+12}=3\Rightarrow x^2-4x+3=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ \(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)

Đặt \(\sqrt{x^2+11}=a\)

\(a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+11}=6\Rightarrow x^2+11=36\Rightarrow...\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)

Đặt \(\sqrt{2x^2+4x+1}=a\ge0\Rightarrow2x^2+4x=a^2-1\Rightarrow x^2+2x=\frac{a^2-1}{2}\)

\(\frac{a^2-1}{2}-1+a=0\)

\(\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+1}=1\Rightarrow2x^2+4x=0\Rightarrow...\)

e/

\(\Leftrightarrow x^2+5x+4-5\sqrt{x^2+5x+28}=0\)

Đặt \(\sqrt{x^2+5x+28}=a>0\Rightarrow x^2+5x=a^2-28\)

\(a^2-28+4-5a=0\)

\(\Leftrightarrow a^2-5a-24=0\Rightarrow\left[{}\begin{matrix}a=8\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow...\)

P/s: tất cả các nghiệm sau khi giải ra x chắc chắn đều thỏa mãn

NV
5 tháng 5 2019

a/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)

Phương trình trở thành:

\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)

\(\Leftrightarrow x^2-16=x^2-16x+64\)

\(\Rightarrow x=5\)

b/ \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:

\(a+3b=3+ab\)

\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)

\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)

NV
5 tháng 5 2019

Bài 2:

a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)

b/Cộng vế với vế:

\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)

\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)

\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)