Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
từ hệ 1 ta có \(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}\)
từ hệ 2 ta có \(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}\)
cộng trừ 2 pt ta có \(\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\) và \(2\left(\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)
nhân 2 vế ta có \(\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}\right)^2-\left(\frac{1}{\sqrt[4]{y}}\right)^2\)
đến đây cậu tự giải nha
a/ ĐKXĐ: ...
\(\Leftrightarrow\frac{4x+3}{x+1}=9\Leftrightarrow4x+3=9\left(x+1\right)\)
\(\Leftrightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)
b/ ĐKXĐ: \(x\ge0\)
Nhân cả tử và mẫu của từng số hạng với biểu thức liên hợp và rút gọn ra được:
\(\sqrt{x+5}-\sqrt{x+4}+\sqrt{x+4}-\sqrt{x+3}+...+\sqrt{x+1}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+5}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+5}=1+\sqrt{x}\)
\(\Leftrightarrow x+5=x+1+2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)
c/ \(\Leftrightarrow2xy-6x-5y+15=33\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Đến đây là pt ước số đơn giản rồi
a, VP >= \(2\sqrt{\left(x+1\right).\frac{1}{x+1}}\)= 2
VT^2 = 2 + 2\(\sqrt{\left(1-2017x\right).\left(1+2017x\right)}\)< = 2 + 1-2017x+1+2017x = 4
=> VT < = 2
=> VT < = VP
Dấu "=" xảy ra <=> 1-2017x = 1+2017x và x+1 = 1 <=> x=0
Vậy ............
b, Có : 4 = (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/xy + 2/yz + 2/zx
=> 1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/zx = 2/xy-1/z^2
<=> 1/x^2+1/y^2+1z^2+2/xy+2/yz+2/zx-2/xy+1/z^2 = 0
<<=> 1/x^2+1/y^2+2/z^2+2/yz+2/zx = 0
<=> (1/x+1/z)^2 + (1/y+1/z)^2 = 0
<=> 1/x+1/z = 1/y+1/z = 0
<=> x=y=-z
<=> x=y=1/2 ; z=-1/2
Tk mk nha
Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)
√a+√(1/a)=7/4;Bình phương 2 vế suy ra:
a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)
Vậy phương trình vô nghiệm