\(\sqrt{\frac{x^2+x+1}{x}}+\sqrt{\frac{x}{x^2+x+1}}=\frac{7}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)

√a+√(1/a)=7/4;Bình phương 2 vế suy ra:

a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)

Vậy phương trình vô nghiệm

12 tháng 8 2019

\(\sqrt{\frac{-6}{1+x}}=5\)

\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)

\(\Leftrightarrow\frac{-6}{1+x}=25\)

\(\Leftrightarrow x+1=\frac{-6}{25}\)

\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)

12 tháng 8 2019

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)

\(\Leftrightarrow\sqrt{x-49}=2\)

\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)

3 tháng 4 2016

từ hệ 1 ta có \(\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{2}{\sqrt[4]{x}}\)

 từ hệ 2 ta có \(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\frac{1}{\sqrt[4]{y}}\)

cộng trừ 2 pt ta có \(\frac{1}{2}=\frac{2}{\sqrt[4]{x}}+\frac{1}{\sqrt[4]{y}}\) và \(2\left(\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=\frac{2}{\sqrt[4]{x}}-\frac{1}{\sqrt[4]{y}}\)

nhân 2 vế ta có \(\frac{2\sqrt{x}+\sqrt{y}}{x+y}=\left(\frac{2}{\sqrt[4]{x}}\right)^2-\left(\frac{1}{\sqrt[4]{y}}\right)^2\)

đến đây cậu tự giải nha 

3 tháng 4 2016

mk làm liều chả biết đúng ko cậu xem có đúng ko

NV
12 tháng 11 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow\frac{4x+3}{x+1}=9\Leftrightarrow4x+3=9\left(x+1\right)\)

\(\Leftrightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)

b/ ĐKXĐ: \(x\ge0\)

Nhân cả tử và mẫu của từng số hạng với biểu thức liên hợp và rút gọn ra được:

\(\sqrt{x+5}-\sqrt{x+4}+\sqrt{x+4}-\sqrt{x+3}+...+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+5}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+5}=1+\sqrt{x}\)

\(\Leftrightarrow x+5=x+1+2\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)

c/ \(\Leftrightarrow2xy-6x-5y+15=33\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Đến đây là pt ước số đơn giản rồi

12 tháng 11 2019
https://i.imgur.com/foHbKBu.jpg
4 tháng 3 2018

a, VP >= \(2\sqrt{\left(x+1\right).\frac{1}{x+1}}\)=   2

VT^2 = 2 + 2\(\sqrt{\left(1-2017x\right).\left(1+2017x\right)}\)< = 2 + 1-2017x+1+2017x = 4

=> VT < = 2

=> VT < = VP

Dấu "=" xảy ra <=> 1-2017x = 1+2017x và x+1 = 1 <=> x=0

Vậy ............

4 tháng 3 2018

b, Có : 4 = (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/xy + 2/yz + 2/zx

=> 1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/zx = 2/xy-1/z^2

<=> 1/x^2+1/y^2+1z^2+2/xy+2/yz+2/zx-2/xy+1/z^2 = 0

<<=> 1/x^2+1/y^2+2/z^2+2/yz+2/zx = 0

<=> (1/x+1/z)^2 + (1/y+1/z)^2 = 0

<=> 1/x+1/z = 1/y+1/z = 0

<=> x=y=-z

<=> x=y=1/2 ; z=-1/2

Tk mk nha

12 tháng 7 2020

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

12 tháng 7 2020

Mik ko gửi đc link , ib riêng nhé