Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)
\(\Rightarrow x-1-\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=x-1+1\)
\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )
\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)
\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)
\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)
\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)
\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)
d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra
a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)
\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)
Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)
b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)
Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)
\(VT=\sqrt{-\left(x-1\right)^2+3}+\sqrt{-\left(x+3\right)^2+1}< 1+\sqrt{3}\) pt vô nghiệm