\(\left(x+1\right)^3+\left(2x\cdot1\right)^3=27x^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

xin loi la( 2x-1)3 nha mn

24 tháng 5 2020

cách 1: khai triển ra rồi làm 

cách 2: đặt \(x+1=a\)và \(2x-1=b\)\(\Rightarrow a+b=3x\)

phương đã cho \(\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)

phần còn lại tự giải nhé

3 tháng 4 2018

\(b,\left(x^2+1\right)^2+3x\left(X^2+1\right)+2x^2=0\)

đặt x^2+1 là y ta đc

\(y^2+3xy+2x^2=0< =>y^2+2xy+xy+2x^2=0< =>y\left(y+2x\right)+x\left(y+2x\right)=0< =>\left(y+x\right)\left(y+2x\right)=0< =>\left[{}\begin{matrix}y=-x\left(1\right)\\y=-2x\left(2\right)\end{matrix}\right.\)

giải 1 ta có;\(x^2+1=-x< =>x^2+x+1=0< =>x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0< =>\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\left(vônghiemej\right)\)

giải 2:\(x^2+1=-2x< =>x^2+2x+1=0< =>\left(x+1\right)^2=0< =>x+1=0< =>x=-1\left(nhận\right)\)

vậy......

b)Cách khác:\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(loai\right)\\x^2+2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ \(x-1\ne0\) hoặc \(x+3\ne0\)

\(\Rightarrow x\ne1\)\(x\ne-3\)

\(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)=x^2+3x-x-3-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow9x-x+2x-5x-3x+x=3-5-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-3\) (không thỏa ĐK)

Vậy PTVN

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

ĐKXĐ: \(x-3\ne0\Rightarrow x\ne3\)

\(x+3\ne0\Rightarrow x\ne-3\)

\(2x+7\ne0\Rightarrow2x\ne-7\Rightarrow x\ne\dfrac{-7}{2}\)

\(\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2+3x-3x-9=12x+42\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\left\{{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\left(KTĐK\right)\\x=-4\left(TĐK\right)\end{matrix}\right.\)

Vậy S={-4}

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\) ( đk: x ≠ 1 ; x ≠ -3 )

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Rightarrow x=-3\left(KTM\right)\)

S = ∅

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

( đk: x ≠ ± 3 ; x ≠ \(\dfrac{-7}{2}\) )

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow x^2+3x-4x-12=0\)

\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)

S = \(\left\{4\right\}\)

a: \(\Leftrightarrow\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{5}x-1\right)^3\)

=>1/3x-1=1/5x-1

=>2/15x=0

hay x=0

b: Đặt 2x+1=a; 3x-1=b

Theo đề, ta có \(\left(a+b\right)^3-a^3-b^3=0\)

=>3ab(a+b)=0

=>5x(2x+1)(3x-1)=0

hay \(x\in\left\{0;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

c: Đặt x-3=a; x+1=b

Theo đề, ta có: \(\left(a+b\right)^3=a^3+b^3\)

=>3ab(a+b)=0

=>(x-3)(x+1)(2x-2)=0

hay \(x\in\left\{3;-1;1\right\}\)

9 tháng 2 2017

Làm cho bạn 1 con thôi dài quá trôi hết màn hình:

c) có vẻ khó nhất (con khác tương tự)

đặt 2x+2=t=> x+1=t/2

\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)

\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)

<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)

27 tháng 4 2018

a/ |x-2| = 3

<=> \(\left\{{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

b/ |x+1| = |2x + 3|

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x+3\\x+1=-2x-3\\-x-1=2x+3\\-x-1=-2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\\x=-\dfrac{4}{3}\\x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

c/ |3x|=x+6

\(\Leftrightarrow\left\{{}\begin{matrix}3x=x+6\\3x=-x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{3}{2}\end{matrix}\right.\)

26 tháng 7 2019

a)|x-2|=3

=>\(\left\{{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

b)|x+1|=|2x-3|

=>\(\left\{{}\begin{matrix}x+1=2x+3\\x+1=-2x+3\\-x-1=2x+3\\-x-1=-2x-3\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-2\\x=\frac{-4}{3}\\x=\frac{-4}{3}\\x=-2\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-2\\x=\frac{-4}{3}\end{matrix}\right.\)

c)|3x|=x+6

=>\(\left\{{}\begin{matrix}3x=x+6\\3x=-x-6\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=3\\x=\frac{-3}{2}\end{matrix}\right.\)

chúc bạn học tốt!

23 tháng 1 2020

Tui nghĩ đề phải vậy nè:

\(\left(x-1\right)^3+\left(x+2\right)^3=\left(2x+1\right)^3\)

Đặt: \(\left\{{}\begin{matrix}x-1=a\\x+2=b\end{matrix}\right.\) Thì pt trên trở thành:

\(a^3+b^3-\left(a+b\right)^3=0\)

\(\Leftrightarrow a^3+b^3-a^3-b^3-3ab\left(a+b\right)=0\)

\(\Leftrightarrow ab\left(a+b\right)=0\)

Xét các trường hợp sau ta được:

\(\left[{}\begin{matrix}x-1=0\\x+2=0\\1x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy pt trên có \(n_0S=\left\{1;-2;-\frac{1}{2}\right\}\)

24 tháng 1 2020

Cảm ưn bn nhìu ạ. Đề mình ghi sai :)))

4 tháng 11 2017

1.

2x3-x2+5x+3=2x3+x2-2x2-x+6x+3=(2x+1)(x2-x+3)

2.

(x+2)(x+3)(x+4)(x+5)-24=(x2+7x+10)(x2+7x+12)-24

Đặt x2+7x+11=a

Ta cso:

(a-1)(a+1)-24=a2-1-24=a2-25=(a-5)(a+5)=(x2+7x+6)(x2+7x+16)

3.

27x3-27x2+18x-4=27x3-9x2-18x2+6x+12x-4=(3x-1)(9x2-6x+4)

5 tháng 11 2017

\(\text{1) }2x^3-x^2+5x+3\\ =2x^3-2x^2+x^2+6x-x+3\\ =\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\\ =2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\\ =\left(2x+1\right)\left(x^2-x+3\right)\\ \)

\(\text{2) }\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+2x+5x+10\right)\left(x^2+3x+4x+12\right)-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\left(1\right)\\ \text{Đặt }x^2+7x+11=y\text{ }\text{ }\left(\text{*}\right)\\ Thay\text{ }\: \left(\text{*}\right)\text{ vào }\left(1\right)\\ \text{ }Ta\text{ }đư\text{ợc }:\\ \left(1\right)=\left(y-1\right)\left(y+1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\text{ }\text{ }\left(2\right)\\ Thay\text{ }\left(\text{*}\right)\text{ vào }\left(2\right)\\ \text{Ta lại được: }\left(2\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+17\right)\\ =\left(x^2+6x+x+6\right)\left(x^2+7x+17\right)\\ =\left[\left(x^2+6x\right)+\left(x+6\right)\right]\left(x^2+7x+17\right)\\ =\left[x\left(x+6\right)+\left(x+6\right)\right]\left(x^2+7x+17\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+17\right)\\ \)

\(\text{3) }27x^3-27x^2+18x-4\\ =27x^3-18x^2-9x^2+12x+6x-4\\ =\left(27x^3-18x^2+12x\right)-\left(9x^2-6x+4\right)\\ =3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\\ =\left(3x-1\right)\left(9x^2-6x+4\right)\\ \)

13 tháng 9 2020

\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3=1^3+\left(2x^2+2x+1\right)^3\)

dùng hđt \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

có nhân tử chung