K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)

\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)

c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)

d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)

f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)

 

NV
27 tháng 10 2019

\(A=\left(x-1\right)^2+2\ge2\)

\(B=-\left(x+2\right)^2+7\le7\)

\(C=2\left(x+1\right)^2+3\ge3\)

\(D=\left(x-1\right)^2+2\left(y+3\right)^2+\left(3z+1\right)^2+4\ge4\)

\(E=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)

\(F=\left(x-2\right)^2+\left(y+1\right)^2\ge0\)

\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(H=-x^2+7x+74=-\left(x-\frac{7}{2}\right)^2+\frac{345}{4}\le\frac{345}{4}\)

27 tháng 10 2019

có thể trả lời đầy đủ giúp mình câu b, c, d, h được ko ??????????

13 tháng 10 2019

a) \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(12x-4\right)\left(-2x-4\right)\)

\(=-6\left(3x-1\right)\left(x+2\right)\)

c) \(x^2-y^2-x+y\)

\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)

\(=\left(x+y-1\right)\left(x-y\right)\)

d)\(4x^2-9y^2+4x-6y\)

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2y-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

13 tháng 10 2019

e) \(-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+\left(5x-5y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

f) \(y^2\left(x^2+y\right)-zx^2-zy\)

\(=y^2\left(x^2+y\right)-z\left(x^2+y\right)\)

\(=\left(y^2-z\right)\left(x^2+y\right)\)

25 tháng 6 2019

a, A = x^2 + 6x + 11

= x^2 + 6x + 9 + 2

= (x + 3)^2 + 2

làm tiếp

25 tháng 6 2019

b, x^2 - 20x + 101

= x^2  20x + 100 + 1

= (x - 10)^2 + 1

có (x - 10)^2 > 0 => (x - 10)^2 +  > 1

15 tháng 9 2016

a) \(A=x^2+6x+11\)

\(A=x^2+6x+9+2\)

\(A=\left(x+3\right)^2+2\)

Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)

Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)

Vậy: \(Min_A=2\) tại \(x=-3\)

b) \(B=4x-x^2+1\)

\(B=-x^2+4x-4+5\)

\(B=-\left(x-2\right)^2+5\)

\(B=5-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\)

\(\Rightarrow5-\left(x-2\right)^2\le5\)

Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_B=5\) tại \(x=2\)

20 tháng 1 2018

d, (x-1) (x+2) (x+3) (x+6)
=(x^2+2x-x-2) (x^2+6x+3x+18)
=(x^2-x^2) + (2x-x+6x-3x) = (-2+18)
=0            + (-8x)              =16
=                    x                =16:(-8)
=                  x                  =-2

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

13 tháng 10 2019

a) \(\left(5x+4\right)^2-49x^2\)

\(=\left(5x+4-7x\right)\left(5x+4+7x\right)\)

\(=\left(4-2x\right)\left(12x+4\right)\)

\(=8\left(2-x\right)\left(3x+1\right)\)

b) \(x^3+2x^2+xy^2\)

\(=x\left(x^2+2x+y^2\right)\)

\(=x\left(x+y\right)^2\)

c)\(x^2-y^2-x+y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

d) \(4x^2-9y^2+4x-6y\)

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

e) \(-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+\left(5x-5y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=-\left(x-y\right)\left(x-y-5\right)\)

f) \(y^2\left(x^2+y\right)-zx^2-zy\)

\(=y^2\left(x^2+y\right)-z\left(x^2+y\right)\)

\(=\left(x^2+y\right)\left(y^2-z\right)\)

\(=\left(x^2+y\right)\left(y-\sqrt{z}\right)\left(y+\sqrt{z}\right)\)

19 tháng 8 2020

a) \(-x-y^2+x^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right).1\)

\(=\left(x+y\right)\left(x-y-1\right)\)

b) \(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-5\right)\)

c) \(x^2-5x+5y-y^2\)

\(=\left(x^2-y^2\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

d) \(5x^3-5x^2y-10x^2+10xy\)

\(=5x\left(x^2-xy-2x+2y\right)\)

\(=5x\left[x\left(x-y\right)-2\left(x-y\right)\right]\)

\(=5x\left(x-y\right)\left(x-2\right)\)

e) \(27x^3-8y^3\)

\(=\left(3x\right)^3-\left(2y\right)^3\)

\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x2y+\left(2y\right)^2\right]\)

\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)

f) \(x^2-y^2-x-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

g) \(x^2-y^2-2xy+y^2\)

\(=\left(x^2-2xy+y^2\right)-y^2\)

\(=\left(x-y\right)^2-y^2\)

\(=\left(x-y-y\right)\left(x-y+y\right)\)

\(=\left(x-y^2\right)x\)

h) \(x^2-y^2+4-4x\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x^2-2.2x+2^2\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

i) \(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)