Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+48}-7\right)\left(\sqrt{x^2+48}+7\right)}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\dfrac{\left(\sqrt{x^2+35}-6\right)\left(\sqrt{x^2+35}+6\right)}{\sqrt{x^2+35}+6}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\dfrac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+35}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\right)=0\)
Do : \(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\ne0\)
\(\Rightarrow x=1\)
\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)
\(\Leftrightarrow\frac{x^2+48-49}{\sqrt{x^2+48}+7}=4x-4+\frac{x^2+35-36}{\sqrt{x^2+35}+6}\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+35}+6}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+48}+7}-4-\frac{x+1}{\sqrt{x^2+35}+6}\right)=0\)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\).
a)\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)
\(\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)
\(\Leftrightarrow\dfrac{x^2+48-49}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\dfrac{x^2+35-36}{\sqrt{x^2+35}+6}\)
\(\Leftrightarrow\dfrac{x^2-1}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\dfrac{x^2-1}{\sqrt{x^2+35}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\left(\sqrt{x-1}+1\right)^3+2\sqrt{x-1}=2-x\)
\(pt\Leftrightarrow\left(\sqrt{x-1}+1\right)^3-1+2\sqrt{x-1}=1-x\)
\(\Leftrightarrow\left(\sqrt{x-1}+1-1\right)\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+1\right)+2\sqrt{x-1}-\left(1-x\right)=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+1\right)+2\sqrt{x-1}+x-1=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+3+\sqrt{x-1}\right)=0\)
Dễ thấy: \(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+3+\sqrt{x-1}>0\)
\(\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
Bài 1:
ĐK:...........
PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)
\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)
\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)
Thay vào PT(2) ta có:
\(x^2+16x-64=128\)
\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)
Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)
Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)
Vậy $(x,y)=(8,\pm 8)$
Bài 2:
Ta thấy:
\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)
\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)
Do đó:
\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)
Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)
Vậy.......
Giải PT
a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)
\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(12\sqrt{x} = 3\)
\(\Leftrightarrow\) \(\sqrt{x} = 4 \)
\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)
\(\Leftrightarrow\) \(x=16\)
b) \(\sqrt{x^2-2x-1} - 3 =0\)
\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)
\(\Leftrightarrow\) \(|x-1|=3\)
* \(x-1=3\)
\(\Leftrightarrow\) \(x=4\)
* \(-x-1=3\)
\(\Leftrightarrow\) \(-x=4\)
\(\Leftrightarrow\) \(x=-4\)
c) \(\sqrt{4x^2+4x+1} - x = 3\)
<=> \(\sqrt{(2x+1)^2} = 3+x\)
<=> \(|2x+1|=3+x\)
* \(2x+1=3+x\)
<=> \(2x-x=3-1\)
<=> \(x=2\)
* \(-2x+1=3+x\)
<=> \(-2x-x = 3-1\)
<=> \(-3x=2\)
<=> \(x=\dfrac{-2}{3}\)
d) \(\sqrt{x-1} = x-3\)
<=> \(\sqrt{(x-1)^2} = (x-3)^2\)
<=> \(|x-1| = x^2-2.x.3+3^2\)
<=> \(|x-1| = x-6x+9\)
<=> \(|x-1| = -5x+9\)
* \(x-1= -5x+9\)
<=> \(x+5x = 9+1\)
<=> \(6x=10\)
<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)
* \(-x-1 = -5x+9\)
<=> \(-x+5x = 9+1\)
<=> \(4x = 10\)
<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
VÌ \(\sqrt{x^2+48}-\sqrt{x^2+35}>0\)
=> \(x>\frac{3}{4}\)
Phương trình tương đương
\((x+6-\sqrt{x^2+48})+3\left(x-1\right)+\left(\sqrt{x^2+35}-6\right)=0\)
=> \(\frac{12\left(x-1\right)}{x+6+\sqrt{x^2+48}}+3\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+35}+6}=0\)
\(\hept{\begin{cases}x=1\\\frac{12}{x+6+\sqrt{x^2+48}}+3+\frac{x+1}{\sqrt{x^2+35}+6}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm do x>3/4=> VT>0