K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

a) Ta có :

\(\frac{2x-5}{x+5}=3\)

\(\Leftrightarrow\)\(2x-5=3\left(x+5\right)\)

\(\Leftrightarrow\)\(2x-5=3x+15\)

\(\Leftrightarrow\)\(3x-2x=-5-15\)

\(\Leftrightarrow\)\(x=-20\)

Vậy \(x=-20\)

b) Ta có :

\(\frac{5}{3x+2}=2x-1\)

\(\Leftrightarrow\)\(5=\left(2x-1\right)\left(3x+2\right)\)

\(\Leftrightarrow\)\(5=3x\left(2x-1\right)+2\left(2x-1\right)\)

\(\Leftrightarrow\)\(5=6x^2-3x+4x-2\)

\(\Leftrightarrow\)\(6x^2+x=7\)

\(\Leftrightarrow\)\(x\left(6x+1\right)=7\)

TRƯỜNG HỢP 1 :

\(\hept{\begin{cases}x=1\\6x+1=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\6x=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=1\end{cases}}}\)

TRƯỜNG HỢP 2 :

\(\hept{\begin{cases}x=-1\\6x+1=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\6x=-8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}}\)( LOẠI )

Vậy \(x=1\)

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

3 tháng 2 2019

a) \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)+x^3\left(x+1\right)+2x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+x^2+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

Dễ thấy \(x^2+x+1>0\forall x;x^2+1>0\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy....

3 tháng 2 2019

b) \(x^4+3x^3-2x^2+x-3=0\)

\(\Leftrightarrow x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0\)

\(\Leftrightarrow x^3\left(x-1\right)+4x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+2x+3\right)=0\)

...

\(\Leftrightarrow x=1\)

p/s: có bác nào giải đc pt \(x^3+4x^2+2x+3=0\)thì giúp nhé :))

12 tháng 2 2017

\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)

12 tháng 2 2017

Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

9 tháng 8 2016

a) 6x(3x +5)-2x(9x-2)=17

6x3x+6x5-2x9x-2x(-2)=17

\(18x^2\)+30x-\(18x^2\)+4x=17

\(18x^2-18x^2\)+ 34x=17

0 +34x=17

x=17:34

x=0.5

b)2x(3x-1)-3x(2x+11)-70=0

2x3x-2x1-3x2x+3x11-70=0

\(6x^2-2x-6x^2+33x-70=0\)

-2x+33x-70=0

31x-70=0

31x=0+70

31x=70

x=\(\frac{70}{31}\)

(trong câu c dấu . của mình là nhân nha)

c)5x(2x-3)-4(8-3x)=2(3+5x)

5x2x-5x3-4.8+4.3x=2.3+2.5x

\(10x^2-15x-32+12x=6+10x\)

\(10x^2-15x+12x-10x=6+32\)

\(10x^2-13x=38\)

tạm thời mình bí chổ này thông cảm nha bạn

20 tháng 8 2020

a. | x + 1 | = 3

<=> x + 1 = 3 hoặc x + 1 = - 3

<=> x = 2 hoặc x = - 4

b. | x | = 1 - x

<=> x = 1 - x hoặc x = - 1 + x ( loại )

<=> x = 1/2 

c. | 1 - x | = x

<=> 1 - x = x hoặc 1 - x = - x ( loại )

<=> x = 1/2

d. | 2x - 3 | = 2x - 3

<=> 2x - 3 = 2x - 3 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc x = 0

e. | 3x + 1 | = - 3x - 1

<=> 3x + 1 = - 3x - 1 hoặc 3x + 1 = 3x + 1

<=> x = 1/3 hoặc với mọi x < 0

g. | 5 - 2x | = 2x - 5

<=> 5 - 2x = 2x - 5 hoặc 5 - 2x = - 2x + 5

<=> x = 5/2 hoặc với mọi x < 0 

24 tháng 8 2018

\(\left(1-2x\right)^2=\left(3x-2\right)^2\)

\(=\left(1-2x\right)^2-\left(3x-2\right)^2=0\)

\(\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)

\(\left(3-5x\right)\left(x-1\right)=0\)

\(\Rightarrow3-5x=0\) \(x-1=0\)

\(\Rightarrow x=\frac{3}{5}\)  or \(x=1\)

b)\(\left(x-2\right)^3+\left(5-2x\right)^3\)

=\(\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)\)

\(\left(3-x\right)\left(x^2-4x+4-5x+2x^2+10-4x+25-20x+4x^2\right)\)

(\(\left(3-x\right)\left(7x^2-33x+39\right)\)

..............

3 tháng 2 2017

a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)

\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)

\(\Leftrightarrow-297-99x=0\)

\(\Leftrightarrow x=3\)

Vậy \(n_0\) của PT là: x=3

b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)

\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)

\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)

\(\Leftrightarrow-64-36x=250-30x\)

\(\Leftrightarrow-6x=314\)

\(\Leftrightarrow x=-\frac{157}{3}\)

Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)

c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)

\(\Leftrightarrow-3x=4x-\frac{23}{5}\)

\(\Leftrightarrow7x=\frac{23}{5}\)

\(\Leftrightarrow x=\frac{23}{35}\)

Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)

d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow x=-\frac{5}{12}\)

Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)