Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)
= \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)
Do đó :
\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)
b) Ta biến đổi :
\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)
\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)
Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)
CMR các hàm số Đb , NB
1, y= \(sin^2x\)+x
2 ,y= \(3sinx-4sin^3x+3x\)3
3, y= \(cos^2x+x^3+3x^2+4x-2\)
a/ \(y'=2sinx.cosx+1=\left(sinx+cosx\right)^2\ge0\) ;\(\forall x\)
\(\Rightarrow\) Hàm đồng biến trên R
b/ Số cuối là 3x hay \(3x^3\) vậy nhỉ?
c/ \(y'=-2sinx.cosx+3x^2+6x+4\)
\(y'=\left(sinx-cosx\right)^2+3\left(x+1\right)^2\ge0\) ;\(\forall x\)
Hàm đồng biến trên R
b.
\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)
\(\Leftrightarrow sinx-1=3k\)
\(\Leftrightarrow sinx=3k+1\)
Do \(-1\le sinx\le1\)
\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)
\(\Rightarrow k=0\)
\(\Rightarrow sinx=1\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
c.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow cosx-1=4k-1\)
\(\Leftrightarrow cosx=4k\)
Mà \(-1\le cosx\le1\Rightarrow-1\le4k\le1\)
\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)
\(\Rightarrow cosx=0\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)
1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)
\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)
Thay x vào ta có...
2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)
\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)
Ta có:
\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)
\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)
Thay x vào, ta có....
\(cos^3x-sin^3x=cos2x\)
\(\Leftrightarrow\left(cosx-sinx\right).\left(1+cosx.sinx\right)=cos^2x-sin^2x\)
\(\Leftrightarrow\left(cosx-sinx\right).\left[\left(1+cosx.sinx\right)-\left(cosx+sinx\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\1+cosx.sinx-\left(cosx+sinx\right)=0\left(2\right)\end{matrix}\right.\)
(1): \(cosx-sinx=0\)
\(\Leftrightarrow tanx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
(2): \(1+cosx.sinx-\left(cosx+sinx\right)=0\)
Đặt \(cosx+sinx=t,t\in\left[-\sqrt{2},\sqrt{2}\right]\)
\(\rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)
\(pt\Leftrightarrow1+\dfrac{1^2-1}{2}-t=0\)
\(\Leftrightarrow2+t^2-1-2t=0\)
\(\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\left(tm\right)\)
Với t = 1 \(\Rightarrow cosx+sinx=1\)
\(\Leftrightarrow\sqrt{2}.sin.\left(x-\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin.\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow sin.\left(x-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\left(k\in Z\right)\)