\(cos^3x-sin^3x=cos2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

\(cos^3x-sin^3x=cos2x\)

\(\Leftrightarrow\left(cosx-sinx\right).\left(1+cosx.sinx\right)=cos^2x-sin^2x\)

\(\Leftrightarrow\left(cosx-sinx\right).\left[\left(1+cosx.sinx\right)-\left(cosx+sinx\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\1+cosx.sinx-\left(cosx+sinx\right)=0\left(2\right)\end{matrix}\right.\)

(1): \(cosx-sinx=0\)

\(\Leftrightarrow tanx=1\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

(2): \(1+cosx.sinx-\left(cosx+sinx\right)=0\)

Đặt \(cosx+sinx=t,t\in\left[-\sqrt{2},\sqrt{2}\right]\)

\(\rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

\(pt\Leftrightarrow1+\dfrac{1^2-1}{2}-t=0\)

\(\Leftrightarrow2+t^2-1-2t=0\)

\(\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\left(tm\right)\)

Với t = 1 \(\Rightarrow cosx+sinx=1\)

\(\Leftrightarrow\sqrt{2}.sin.\left(x-\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin.\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow sin.\left(x-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

GV
4 tháng 5 2017

a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)

\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)

\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)

\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)

Vậy:

\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)

\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)

23 tháng 1 2016

a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)

          = \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)

Do đó : 

\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)

23 tháng 1 2016

b) Ta biến đổi :

\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)

\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)

Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)

NV
6 tháng 9 2020

a/ \(y'=2sinx.cosx+1=\left(sinx+cosx\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow\) Hàm đồng biến trên R

b/ Số cuối là 3x hay \(3x^3\) vậy nhỉ?

c/ \(y'=-2sinx.cosx+3x^2+6x+4\)

\(y'=\left(sinx-cosx\right)^2+3\left(x+1\right)^2\ge0\) ;\(\forall x\)

Hàm đồng biến trên R

NV
1 tháng 10 2020

b.

\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)

\(\Leftrightarrow sinx-1=3k\)

\(\Leftrightarrow sinx=3k+1\)

Do \(-1\le sinx\le1\)

\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)

\(\Rightarrow k=0\)

\(\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

NV
1 tháng 10 2020

c.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow cosx-1=4k-1\)

\(\Leftrightarrow cosx=4k\)

\(-1\le cosx\le1\Rightarrow-1\le4k\le1\)

\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)

\(\Rightarrow cosx=0\)

\(\Rightarrow x=\frac{\pi}{2}+k\pi\)

20 tháng 1 2019

\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)

20 tháng 1 2019

phần a bạn thêm +C vào đáp án nhé
\(i,\int2sinx3x.cos2xdx=2\int\dfrac{1}{2}\left(sin5x+sinx\right)dx=\int sin5xdx+\int sinxdx=-\dfrac{1}{5}cos5x-cosx+C\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....