\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\frac{x^2+48-49}{\sqrt{x^2+48}+7}=4x-4+\frac{x^2+35-36}{\sqrt{x^2+35}+6}\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+48}+7}-4-\frac{x+1}{\sqrt{x^2+35}+6}\right)=0\)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\).

7 tháng 8 2017

a)\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)

\(\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\dfrac{x^2+48-49}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\dfrac{x^2+35-36}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\dfrac{x^2-1}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\dfrac{x^2-1}{\sqrt{x^2+35}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\left(\sqrt{x-1}+1\right)^3+2\sqrt{x-1}=2-x\)

\(pt\Leftrightarrow\left(\sqrt{x-1}+1\right)^3-1+2\sqrt{x-1}=1-x\)

\(\Leftrightarrow\left(\sqrt{x-1}+1-1\right)\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+1\right)+2\sqrt{x-1}-\left(1-x\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+1\right)+2\sqrt{x-1}+x-1=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+3+\sqrt{x-1}\right)=0\)

Dễ thấy: \(\left(\sqrt{x-1}+1\right)^6+\left(\sqrt{x-1}+1\right)^3+3+\sqrt{x-1}>0\)

\(\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

12 tháng 1 2019

\(pt\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+48}-7\right)\left(\sqrt{x^2+48}+7\right)}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\dfrac{\left(\sqrt{x^2+35}-6\right)\left(\sqrt{x^2+35}+6\right)}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\dfrac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+35}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\right)=0\)

Do : \(\dfrac{x+1}{\sqrt{x^2+48}+7}-4-\dfrac{x+1}{\sqrt{x^2+35}+6}\ne0\)

\(\Rightarrow x=1\)

2 tháng 12 2018
https://i.imgur.com/r7lKsjx.gif
17 tháng 5 2019

VÌ \(\sqrt{x^2+48}-\sqrt{x^2+35}>0\)

=> \(x>\frac{3}{4}\)

Phương trình tương đương

\((x+6-\sqrt{x^2+48})+3\left(x-1\right)+\left(\sqrt{x^2+35}-6\right)=0\)

=> \(\frac{12\left(x-1\right)}{x+6+\sqrt{x^2+48}}+3\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+35}+6}=0\)

\(\hept{\begin{cases}x=1\\\frac{12}{x+6+\sqrt{x^2+48}}+3+\frac{x+1}{\sqrt{x^2+35}+6}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm do x>3/4=> VT>0

12 tháng 11 2016

a/ Điều kiện b tự làm nhé

Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)

Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành

\(a-b=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)

Tới đây thì đơn giản rồi b làm tiếp nhé

26 tháng 10 2020

a) \(\sqrt{5x}=\sqrt{35}\)

ĐK : x ≥ 0

Bình phương hai vế

pt ⇔ 5x = 35 ⇔ x = 7 ( tm )

b) \(\sqrt{36\left(x-5\right)}=18\)

ĐK : x ≥ 5

Bình phương hai vế

pt ⇔ 36( x - 5 ) = 324

    ⇔ x - 5 = 9

    ⇔ x = 14 ( tm )

c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)

⇔ \(\sqrt{\left(4-8x\right)^2}=20\)

⇔ \(\left|4-8x\right|=20\)

⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

d) \(\sqrt{3-2x}\le\sqrt{5}\)

ĐK : x ≤ 3/2

Bình phương hai vế

bpt ⇔ 3 - 2x ≤ 5

⇔ -2x ≤ 2

⇔ x ≥ -1

Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2

26 tháng 10 2020

\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)

\(\Leftrightarrow5x=35\)

\(\Leftrightarrow x=7\left(tm\right)\)

vậy...

b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)

\(\Leftrightarrow6\sqrt{x-5}=18\)

\(\Leftrightarrow\sqrt{x-5}=3\)

\(\Leftrightarrow x-5=9\)

\(\Leftrightarrow x=14\left(tm\right)\)

vậy...

c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)

\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

vậy....

\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)

\(\Leftrightarrow3-2x< 25\)

\(\Leftrightarrow-2x< 22\)

\(\Leftrightarrow x>-11\)

\(\Rightarrow-11< x< 1.5\)

vạy.