\(\sqrt{\dfrac{1+2x\sqrt{1-x}}{2}}=1-2x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)

ĐKXĐ : \(x\inℝ\)

\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)

\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)

\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)

\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)

\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất x = 0

nếu vế phải là \(2\sqrt{2}\)thì làm như này: 

Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)

\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)