\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+25}\ge\sqrt{9}+\sqrt{25}=8\)

Do dấu "=" ko đồng thời xảy ra ở hai bđt nên pt vô nghiệm 

25 tháng 8 2019

\(\sqrt{3\left(x+1\right)^2+9}-3+\sqrt{5\left(x^2-1\right)^2+25}-5=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)=0\)

\(\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)>0\left(\forall x\right)\)

\(\Rightarrow x=-1\)

Bạn kia làm sai rùi ạ chắc nhìn nhầm đề 

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

26 tháng 7 2017

a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)

Dấu = xảy ra khi \(x=-1\)

b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có

\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)

Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có

\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)

Thôi làm tiếp đi làm biếng quá.

26 tháng 7 2017

a)3x2+6x+7+5x2+10x+14=42xx2

\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)

\(\Leftrightarrow-x^2-2x+4\)

  Thế vào ta được:

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)

\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)

9 tháng 3 2019

\(\sqrt{3x^2+6x+12}+\sqrt{5x^2-10x^2+9}=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+4}\)

\(\ge\sqrt{9}+\sqrt{4}=3+2=5\)

15 tháng 10 2016

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)

  • Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.

Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\) 

Tương tự ta chứng minh được :

  • f(x) nghịch biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

15 tháng 10 2016

Ta có 

\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)

\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)

4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)

Ta có VT \(\ge5\);VP \(\le\)5

Nên dấu bằng xảy ra khi x = - 1

4 tháng 4 2020

ta có

zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)

zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức

KL ::

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu a:

ĐKXĐ: \(x\geq 1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)

\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)

(Vô lý với mọi \(x\geq 1\) )

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu b)

PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)

\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)

\((x+1)^2\geq 0, \forall x\) nên:

\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)

\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)

\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)

Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)

Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)

Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)

Vậy pt có nghiệm $x=-1$

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

2 tháng 6 2016

Sorry em mới học lớp 7

2 tháng 6 2016

đề hình như ko có căn bậc 4 chỉ có căn bậc 2 thui

mà căn bậc 4 thì x=-1