\(\left(1-\sqrt{1-x}\right)\sqrt[3]{2-x}=x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)

\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)

Vậy...

14 tháng 1 2017

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có

\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) vế theo vế ta được

\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)

Với a = b

\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)

\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)

Với a = 1

\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)

Với b = 1

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)

Vậy PT có nghiệm là x = 3

\(x=-1\)Giao lưu thôi nhé

15 tháng 1 2017

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)

Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)

Với a = b thì

\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)

Với a = 1 thì

\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

Với b = 1 thì

\(\sqrt{x+2}=1\Leftrightarrow x=-1\)

9 tháng 3 2020

ĐK: \(\hept{\begin{cases}x\ge0\\x\ne1;y\ne2\end{cases}}\)

pt <=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}-1}+\frac{6}{\left|y-2\right|}=2\\\frac{2-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{3}{3\left|y-2\right|}=-9\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}-1}+\frac{6}{\left|y-2\right|}=2\\\frac{2}{\sqrt{x}-1}-\frac{1}{\left|y-2\right|}=-8\end{cases}}\)

Đặt: \(\frac{1}{\sqrt{x}-1}=u;\frac{1}{\left|y-2\right|}=v>0\)ta có pt:

\(\hept{\begin{cases}u+6v=2\\2u-v=-8\end{cases}}\)=> tìm u; v sau đó tìm x; y

9 tháng 3 2020

Đặt \(\left|y-2\right|=u;\sqrt{x}-1=v\)

Hệ trở thành \(\hept{\begin{cases}\frac{1}{v}+\frac{6}{u}=2\\\frac{2}{v}-u=-8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2}{v}+\frac{12}{u}=4\\\frac{2}{v}-u=-8\end{cases}}\)

\(\Rightarrow\frac{12}{u}+u=12\Rightarrow\frac{12+u^2}{u}=12\)

\(\Rightarrow u^2-12u+12=0\)

\(\Delta=12^2-4.12=96,\sqrt{\Delta}=4\sqrt{6}\)

\(\Rightarrow\orbr{\begin{cases}u=\frac{12+4\sqrt{6}}{2}=6+2\sqrt{6}\\u=\frac{12-4\sqrt{6}}{2}=6-2\sqrt{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left|y-2\right|=6+2\sqrt{6}\\\left|y-2\right|=6-2\sqrt{6}\end{cases}}\)

\(\Rightarrow y\in\left\{8\pm2\sqrt{6};-4\pm2\sqrt{6}\right\}\)

Thay vào hệ tính được x nha, th nào ko đúng loại

7 tháng 6 2019

TUY BẠN CHO ĐỀ HƠI SAI SAI NHƯNG MIK VẪN GIẢI/// ĐÁP ÁN NÈ:

x = 3 !!!!! nếu thiếu thông cảm dùm mik nha

6 tháng 8 2018

cho mk bỏ 2x ở cuôi nha 

6 tháng 8 2018

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\) Điều kiện: \(\orbr{\begin{cases}x\ge1\\x\le-2\end{cases}}\)

Do VT \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)Kết hợp với điều kiện ta có \(x\ge1\)

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\)

\(\Leftrightarrow2\sqrt{x\left(x-1\right)}+2\sqrt{x\left(x+2\right)}=4x.\)

\(\Leftrightarrow2x-2\sqrt{x\left(x-1\right)}+2x-2\sqrt{x\left(x+2\right)}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x\left(x-1\right)}+x-1\right)+\left(x-2\sqrt{x\left(x+2\right)}+x+2\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{x-1}\right)^2+\left(\sqrt{x}-\sqrt{x+2}\right)^2=1\)